Skip to main content
Log in

Genetic association of PLCE1, C11orf92-C11orf93, and NOC3L with colorectal cancer risk in the Han population

  • Research Article
  • Published:
Tumor Biology

Abstract

Colorectal cancer (CRC) is a common malignant tumor that is influenced by an interaction between genetic and environmental factors. Currently, the inherited factors of CRC are unclear. Our study selected 19 tag single nucleotide polymorphisms (tSNPs) to investigate whether they were associated with CRC in the Han population. In this Han Chinese case–control study, we genotyped 203 CRC cases and 296 controls using Sequenom MassARRAY technology and analyzed their associations with CRC using χ2 tests, SNPStats software, and SHEsis software. Based on χ2 tests, PLCE1 -rs2077218, rs11187877 (p = 0.049) and C11orf92-C11orf93-rs3802842 (p = 0.023) correlate with CRC risk. In the genetic model analyses, we found the genotype “CC” of rs3802842 in C11orf92-C11orf93 may significantly increase CRC risk in the recessive model (p = 0.0071), whereas “GT” of rs17109928 in NOC3L may decrease the risk in the over-dominant model (p = 0.0091). Using SHEsis software, we found PLCE1 and NOC3L are strongly linked, and the “GCCATTCTGTC” haplotype may increase the risk of CRC (p = 0.049). We found three genes (PLCE1, C11orf92-C11orf93, and NOC3L) are associated with CRC susceptibility. In combination with previous reports, our results suggest that these genes may be associated with CRC in the Han population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zheng S, Zhang SZ, Chen K, Zhu YL, Dong Q. Research on colorectal cancer in China. Recent Adv Cancer Res Ther. 2012; 535–95.

  2. Gsur A, Bernbart K, Baierl A, Feik E, Fuhrlinger G, Hofer P, et al. No association of XRCC1 polymorphisms Arg194Trp and Arg399Gln with colorectal cancer risk. Cancer Epidemiol. 2011;35:e38–41.

    Article  PubMed  CAS  Google Scholar 

  3. Wang X, Zbou C, Qiu G, Fan J, Tang H, Peng Z. Screening of new tumor suppressor genes in sporadic colorectal cancer patients. Hepatogastroenterology. 2008;55:2039–44.

    PubMed  CAS  Google Scholar 

  4. Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet. 2012;44:770–6.

    Article  PubMed  CAS  Google Scholar 

  5. Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008;40:1426–35.

    Article  PubMed  CAS  Google Scholar 

  6. Peters U, Hutter CM, Hsu L, Schumacher FR, Conti DV, Carlson CS, et al. Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet. 2012;131:217–34.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009.

  8. Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.

    Article  PubMed  CAS  Google Scholar 

  9. Adamec C. Example of the use of the nonparametric test: Test χ2 for comparison of 2 independent examples. Cesk Zdrav. 1964;12:613–9.

    PubMed  CAS  Google Scholar 

  10. Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928–9.

    Article  PubMed  CAS  Google Scholar 

  11. Bland JM, Altman DG. Statistical notes. The odds ratio. Brit Med J. 2000;320:1468.

    Google Scholar 

  12. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.

    Article  PubMed  CAS  Google Scholar 

  13. Bye H, Prescott NJ, Lewis CM, Matejcjc M, Moodley L, Robertson B. Distinct genetic association at the PLCE1 locus with oesophageal squamous cell carcinoma in the South African population. Carcinogenesis. 2012;33:2155–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Gu H, Ding G, Zhang W, Liu C, Chen Y, Chen S. Replication study of PLCE1 and C20orf54 polymorphism and risk of esophageal cancer in a Chinese population. Mol Biol Rep. 2012;39:9105–11.

    Article  PubMed  CAS  Google Scholar 

  15. Palmer AJ, Lochhead P, Hold GL, Rabkin CS, Chow WH, Lissowska J. Genetic variation in C20orf54, PLCE1 and MUC1 and the risk of upper gastrointestinal cancers in Caucasian populations. Eur J Cancer Prev. 2012;21:541–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Wang X, Zhou C, Qiu G, Yang Y, Yan D, Xing T, et al. Phospholipase C epsilon plays a suppressive role in incidence of colorectal cancer. Med Oncol. 2012;29:1051–8.

    Article  PubMed  CAS  Google Scholar 

  17. Wang XL, Zhou CZ, Qiu GQ, Fan JW, Xing TH, Li T, et al. PLCE1 over-expression inhibits migration of colon cancer SW620 cells and induces their apoptosis. Tumor. 2011; 31.

  18. Peltekova V, Lemire M, Trinh Q, Qazi A, Bielecki R, HodgsonJensen L, et al. Tumor microenvironment and genetic association with colorectal cancer risk. EJC. 2012;48 Suppl 5:S25.

    Article  Google Scholar 

  19. Tominage K, Johmura Y, Nishizuka M, Imagawa M. Fad24, a mammalian homolog of Noc3p, is a positive regulator in adipocyte differentiation. J Cell Sci. 2004;117:6217–26.

    Article  CAS  Google Scholar 

  20. Johmura Y, Osada S, Nishizuka M, Imaqawa M. FAD24, a regulator of adipogenesis, is required for the regulation of DNA replication in cell proliferation. Biol Pharm Bull. 2008;31:1092–5.

    Article  PubMed  CAS  Google Scholar 

  21. Johmura Y, Osada S, Nishizuka M, Imagawa M. FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J Biol Chem. 2008;283:2265–74.

    Article  PubMed  CAS  Google Scholar 

  22. Johmura Y, Suzuki M, Osada S, Nishizuka M, Imagawa M. FAD24, a regulator of adipogenesis and DNA replication, inhibits H-RAS-mediated transformation by repressing NF-кB activity. Biochem Bioph Res Co. 2008;369:464–70.

    Article  CAS  Google Scholar 

  23. Karin M. Nuclear factor-kappa B in cancer development and progression. Nature. 2006;441:431–6.

    Article  PubMed  CAS  Google Scholar 

  24. Wang S, Liu ZJ, Wang LS, Zhang XR. NF-κB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327–34.

    Article  PubMed  CAS  Google Scholar 

  25. Yuan LJ, Jin TB, Yin JK, Du XL, Wang Q, Dong R, et al. Polymorphisms of tumor-related genes IL-10, PSCA, MTRR, and NOC3L are associated with the risk of gastric cancer in the Chinese Han population. Cancer Epidemiol. 2012;36:e366–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by theNational 863 High-Technology Research and Development Program (No. 2012AA02A519). We are grateful to the patients and control subjects for their participation in this study. We also thank the clinicians and hospital staff who contributed to the blood samples and data collection for this study.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbin Long or Chao Chen.

Additional information

Xianglong Duan and Xiaolan Li are the joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, X., Li, X., Lou, H. et al. Genetic association of PLCE1, C11orf92-C11orf93, and NOC3L with colorectal cancer risk in the Han population. Tumor Biol. 35, 1813–1817 (2014). https://doi.org/10.1007/s13277-013-1242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1242-9

Keywords

Navigation