Tumor Biology

, Volume 35, Issue 2, pp 1467–1472 | Cite as

CDKN2A exon-wise deletion status and novel somatic mutations in Indian glioma patients

  • M. K. Sibin
  • Dhananjaya I. Bhat
  • Ch Lavanya
  • M. Jeru Manoj
  • S. Aakershita
  • G. K. Chetan
Research Article


Over the years, deletions of CDKN2A (p16) tumor suppressor gene has been studied using FISH and multiplex PCR, with major focus on exon 2 in various cancers, and the frequency of mutation is found to be varied in different studies. In this study, we analyzed the deletion status of all three exons of p16 and frequency of exon 2 somatic point mutations in glioma from the Indian population and its clinical implications. Multiplex PCR was carried out in order to check deletion of all 3 exons in 50 glioma samples. Nonconventional PCR-SSCP analysis and sequencing was done to identify mutations in 48 cases. Deletion of at least one of the three exons of p16 INK4A was observed in ten cases (20 %). The frequencies of exon-wise deletions were 10 % for exon 1, 4 % for exon 2, and 8 % for exon 3. Two out of 48 samples were positive for mutations in p16 exon 2. One sample had a transition of G to C on position 147 with a codon change TGG to TGC which does not contribute to the protein structure. Another sample had a transversion of A to G on the position 154 with a codon change ATG to GTG with change in amino acid methionine to valine in 52nd position. Deletion pattern was found to be varied in three exons. Frequency of p16 gene mutation was less in the Indian population (4.2 %), and this mutation does not contribute to any remarkable change in protein structure.


Glioma CDKN2A p16 Exon 2 Mutations Deletion 



Mr. Sibin M. K. is a CSIR-Junior research fellow, thus financial support provided by CSIR, New Delhi is kindly acknowledged.

Conflict of interest



  1. 1.
    Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet. 2012;205(12):613–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Kita D, Yonekawa Y, Weller M, Ohgaki H. PI3KCA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol (Berl). 2007;113:295–302.CrossRefGoogle Scholar
  3. 3.
    Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. 1996;6:217–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8(1):23–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368:753–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 1998;92(6):713–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83:993–1000.PubMedCrossRefGoogle Scholar
  8. 8.
    Pollock PM, Pearson JV, Hayward NK. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosom Cancer. 1996;15(2):77–88.PubMedCrossRefGoogle Scholar
  9. 9.
    Kyritsis AP, Zhang B, Zhang W, Xiao M, Takeshima H, Bondy ML, et al. Mutations of the p16 gene in gliomas. Oncogene. 1996;12(1):63–7.PubMedGoogle Scholar
  10. 10.
    Li YJ, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G, Hamelin R. Frequent loss of heterozygosity on chromosome 9, and low incidence of mutations of cyclin-dependent kinase inhibitors p15 (MTS2) and p16 (MTS1) genes in gliomas. Oncogene. 1995;11(3):597–600.PubMedGoogle Scholar
  11. 11.
    Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, et al. Deletion of p16 and p15 genes in brain tumors. Cancer Res. 1994;54(24):6353–8.PubMedGoogle Scholar
  12. 12.
    Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP. Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer. 1997;75(1):2–8.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Moulton T, Samara G, Chung WY, Yuan L, Desai R, Sisti M. MTS1/p16/CDKN2 lesions in primary glioblastomamultiforme. Am J Pathol. 1995;146(3):613–9.PubMedGoogle Scholar
  14. 14.
    Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 1997;94:303–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Barker FG, Chen P, Furman F, Aldape KD, Edwards MS, Israel MA. P16 deletion and mutation analysis in human brain tumors. J Neurooncol. 1997;31:17–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Miettinen H, Kononen J, Sallinen P, Alho H, Helen P, Helin H. CDKN2/p16 predicts survival in oligodendrogliomas: comparison with astrocytomas. JNeurooncol. 1999;41(3):205–11.CrossRefGoogle Scholar
  17. 17.
    Riese U, Dahse R, Fiedler W, Theuer C, Koscielny S, Ernst G, et al. Tumor suppressor gene p16 (CDKN2A) mutation status and promoter inactivation in head and neck cancer. Mol Med. 1999;4:6.Google Scholar
  18. 18.
    Hamzeiy H. Non-radioactive single-strand conformation polymorphis (SSCP) analysis of relatively long PCR products. RPS. 2006;1:8–14.Google Scholar
  19. 19.
    Brant J. Bassam, Gustavo Caetano-Anollés, Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotechnol. 1993;42(2–3):181–8.Google Scholar
  20. 20.
    Lukas J, Aagaard L, Strauss M, Bartek J. Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. Cancer Res. 1995;55(21):4818–23.PubMedGoogle Scholar
  21. 21.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Perry A, Nobori T, Ru N, Anderl K, Borell TJ, Mohapatra G, et al. Detection of p16 gene deletions in gliomas: a comparison of fluorescence in situ hybridization (FISH) versus quantitative PCR. J Neuropathol Exp Neurol. 1997;56:999–1008.PubMedCrossRefGoogle Scholar
  23. 23.
    Dreyling MH, Bohlander SK, Adeyanju MO, Olopade OI. Detection of CDKN2 deletions in tumor cell lines and primary glioma by interphase fluorescence in situ hybridization. Cancer Res. 1995;55:984–8.PubMedGoogle Scholar
  24. 24.
    Giani C, Finocchiaro G. Mutation rate of the CDKN2 gene in malignant gliomas. Cancer Res. 1994;54:6338–9.PubMedGoogle Scholar
  25. 25.
    Walker DG, Duan W, Popovic EA, Kaye AH, Tomlinson FH, Lavin M. Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas. Cancer Res. 1995;55:20–3.PubMedGoogle Scholar
  26. 26.
    Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 1996;56:150–3.PubMedGoogle Scholar
  27. 27.
    Mochizuki S, Iwadate Y, Namba H, Yoshida Y, Yamaura A, Sakiyama S, et al. Homozygous deletion of the p16/MTS-1/CDKN2 gene in malignant gliomas is infrequent among Japanese patients. Int J Oncol. 1999;15:983–9.PubMedGoogle Scholar
  28. 28.
    Ono Y, Tamiya T, Ichikawa T, Kunishio K, Matsumoto K, Furuta T, et al. Malignant astrocytomas with homozygous CDKN2/p16 gene deletions have higher Ki-67 proliferation indices. J Neuropathol Exp Neurol. 1996;55:1026–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Sonoda Y, Yoshimoto T, Sekiya T. Homozygous deletion of the MTS1/p16 and MTS2/p15 genes and amplification of the CDK4 gene in glioma. Oncogene. 1995;11:2145–9.PubMedGoogle Scholar
  30. 30.
    Tsuzuki T, Tsunoda S, Sakaki T, Konishi N, Hiasa Y, Nakamura M. Alterations of retinoblastoma, p53, p16(CDKN2), and p15 genes in human astrocytomas. Cancer. 1996;78:287–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Kamiryo T, Tada K, Shiraishi S, Shinojima N, Nakamura H, Kochi M, et al. Analysis of homozygous deletion of the p16 gene and correlation with survival in patients with glioblastomamultiforme. J Neurosurg. 2002;96(5):815–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Purkait S, Jha P, Sharma MC, Suri V, Sharma M, Kale SS, et al. CDKN2A deletion in pediatric versus adult glioblastomas and predictive value of p16 immunohistochemistry. Neuropathology. 2013;33(4):405–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Sailasree R, Abhilash A, Sathyan KM, Nalinakumari KR, Thomas S, Kannan S. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. CancerEpidemiol Biomarkers Prev. 2008;17(2):414–20.CrossRefGoogle Scholar
  34. 34.
    Cairns P, Mao L, Merlo A, Lee DJ, Schwab D, Eby Y, et al. Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science. 1994;265(5170):415–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Kukita Y, Higasa K, Baba S, Nakamura M, Manago S, Suzuki A, et al. Single-strand conformation polymorphism. In: Cotton RGH, Edkins E, Forrest S, editors. Mutation detection, a practical approach. Oxford: IRL Press; 1998. p. 2259–66.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • M. K. Sibin
    • 1
  • Dhananjaya I. Bhat
    • 2
  • Ch Lavanya
    • 1
  • M. Jeru Manoj
    • 1
  • S. Aakershita
    • 1
  • G. K. Chetan
    • 1
  1. 1.Department of Human GeneticsNational Institute of Mental Health and Neuro SciencesBangaloreIndia
  2. 2.Department of NeurosurgeryNational Institute of Mental Health and Neuro SciencesBangaloreIndia

Personalised recommendations