Tumor Biology

, Volume 35, Issue 2, pp 1451–1458 | Cite as

Rhomboid family gene expression profiling in breast normal tissue and tumor samples

  • R. Canzoneri
  • E. Lacunza
  • M. Isla Larrain
  • M. V. Croce
  • M. C. Abba
Research Article


Rhomboid is an evolutionary conserved and functionally diversified group of proteins composed of proteolytically active and inactive members that are involved in the modulation of multiple biological processes such as epidermal growth factor receptor signaling pathway, endoplasmic reticulum-associated degradation, cell death, and proliferation. Recently, several human rhomboid genes have been associated with the development of chronic myeloid leukemia and pituitary, colorectal, ovarian, and breast cancers. In this study, we evaluated the mRNA and protein expression profiles of rhomboid genes in cancer cell lines and breast tissue/tumor samples. In silico analysis of publicly available gene expression datasets showed that different rhomboid genes are specifically expressed according to the breast cancer intrinsic subtypes. Quantitative reverse transcription–polymerase chain reaction (RT-PCR) analysis showed a significant RHBDD2 mRNA overexpression in advanced breast cancer compared with normal tissue samples (p = 0.012). In addition, we found that RHBDL2 and PARL mRNA expression was associated with a low/intermediate histologic tumor grade (p = 0.024 and p = 0.015, respectively). Immunohistochemistry analysis showed a significant increase of RHBDD2 protein expression in association with breast cancer samples negative for progesterone receptor (p = 0.015). Moreover, protein expression analysis corroborated the quantitative RT-PCR results, indicating that breast primary tumors belonging to patients with a more disseminated disease expressed significantly increased levels of RHBDD2 protein compared with less disseminated tumors (p = 0.01).


Rhomboid Gene expression Breast cancer 



This work was supported by the CONICET (PIP-2131) and FONCYT (PICT-0275) grants (Abba MC).

Conflicts of interest



  1. 1.
    Freeman M. Proteolysis within the membrane: rhomboids revealed. Nature. 2004;5:188–97.Google Scholar
  2. 2.
    Sturtevant MA, Roark M, Bier E. The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev. 1993;7(6):961–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Pascall JC, Brown KD. Characterization of a mammalian cDNA encoding a protein with high sequence similarity to the Drosophila regulatory protein Rhomboid. FEBS Lett. 1998;429(3):337–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Bergbold N, Lemberg MK. Emerging role of rhomboid family proteins in mammalian biology and disease. Biochim Biophys Acta. 2013. doi: 10.1016/j.bbamem.2013.03.025.PubMedGoogle Scholar
  5. 5.
    Adrain C, Zettl M, Christova Y, Taylor N, Freeman M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science. 2012;335:225–8.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Jeyaraju DV, Xu L, Letellier MC, Bandaru S, Zunino R, Berg EA, et al. Phosphorylation and cleavage of presenilin-associated rhomboid-like protein (PARL) promotes changes in mitochondrial morphology. PNAS. 2006;103(49):18562–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Fleig L, Bergbold N, Sahasrabudhe P, Geiger B, Lemberg MK. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol Cell. 2012;47:558–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Bahar A, Simpson DJ, Cutty SJ, Bicknell JE, Hoban PR, Holley S, et al. Isolation and characterization of a novel pituitary tumor apoptosis gene. Mol Endocrinol. 2004;19(7):1827–39.CrossRefGoogle Scholar
  9. 9.
    Bahar A, Whitby P, Holley S, Hoban PR, Elder JB, Deakin M, et al. Primary colorectal tumors fail to express the proapoptotic mediator PTAG and its reexpression augments drug-induced apoptosis. Genes Chromosom Cancer. 2007;46(2):202–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang Y, Guan X, Fok KL, Li S, Zhang X, Miao S, et al. A novel member of the Rhomboid family, RHBDD1, regulates BIK-mediated apoptosis. Cell Mol Life Sci. 2008;65(23):3822–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Wan C, Fu J, Wang Y, Miao S, Song W, Wang L. Exosome-related multi-pass transmembrane protein TSAP6 is a target of rhomboid protease RHBDD1-induced proteolysis. PLoS One. 2012;7(5):e37452.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Pellegrini L, Scorrano L. A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ. 2007;14(7):1275–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Sanjuán Szklarz LK, Scorrano L. The antiapoptotic OPA1/Parl couple participates in mitochondrial adaptation to heat shock. Biochim Biophys Acta. 2012;1817(10):1886–93.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ren X, Song W, Liu W, Guan X, Miao F, Miao S, et al. Rhomboid domain containing 1 inhibits cell apoptosis by upregulating AP-1 activity and its downstream target Bcl-3. FEBS Lett. 2013;587(12):1793–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu XN, Tang ZH, Zhang Y, Pan QC, Chen XH, Yu YS, et al. Lentivirus-mediated silencing of rhomboid domain containing 1 suppresses tumor growth and induces apoptosis in hepatoma HepG2 cells. Asian Pac J Cancer Prev. 2013;14(1):5–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Yan Z, Zou H, Tian F, Grandis JR, Mixson AJ, Lu PY, et al. Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol Cancer Ther. 2008;7(6):1355–64.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Blaydon DC, Etheridge SL, Risk JM, Hennies HC, Gay LJ, Carroll R, et al. RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. Am J Hum Genet. 2012;90(2):340–6.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Wojnarowicz PM, Provencher DM, Mes-Masson AM, Tonin PN. Chromosome 17q25 genes, RHBDF2 and CYGB, in ovarian cancer. Int J Oncol. 2012;40(6):1865–80.PubMedGoogle Scholar
  19. 19.
    Lin YN, Gui FM, Shen H, Wang F, Cao Z, Li QH, et al. Expression of RHBDD1 gene in patients with chronic myeloid leukemia and its clinical significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2013;21(1):12–5.PubMedGoogle Scholar
  20. 20.
    Adrain C, Strisovsky K, Zettl M, Hu L, Lemberg MK, Freeman M. Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 2011;5(12):421–7.CrossRefGoogle Scholar
  21. 21.
    Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY. Human rhomboid family-1 genes RHBDF1 participates in GPCR-mediated transactivation of growth signals in head and neck squamous cancer cells. FASEB J. 2009;23:425–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Yan Z, Zou H, Tian F, Grandis JR, Mixson AJ, Lu PY, et al. Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol Cancer Ther. 2008;7:1355–64.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Etheridge SL, Brooke MA, Kelsell DP, Blaydon DC. Rhomboid proteins: a role in keratinocyte proliferation and cancer. Cell Tissue Res. 2013;351(2):301–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Abba MC, Lacunza E, Nunez MI, Colussi A, Isla-Larrain M, Segail-Eiras A, et al. Rhomboid domain containing 2 (RHBDD2): a novel cancer-related gene over-expressed in breast cancer. Biochim Biophys Acta. 2009;1792(10):988–97.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lacunza E, Canzoneri R, Rabassa ME, Zwenger A, Segal-Eiras A, Croce MV, et al. RHBDD2: a 5-fluorouracil responsive gene overexpressed in the advanced stages of colorectal cancer. Tumor Biol. 2012;33(6):2393–9.CrossRefGoogle Scholar
  26. 26.
    Taminau J, Meganck S, Lazar C, Steenhoff D, Coletta A, Molter C, et al. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinforma. 2012;13:335.CrossRefGoogle Scholar
  27. 27.
    Cox ML, Schray CL, Luster CN, Stewart ZS, Korytko PJ, Khan KNM, et al. Assessment of fixatives, fixation, and tissue processing on morphology and RNA integrity. Exp Mol Pathol. 2006;80:183–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006;126:163–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126:177–89.PubMedCrossRefGoogle Scholar
  30. 30.
    Hill RB, Pellegrini L. The PARL family of mitochondrial rhomboid proteases. Semin Cell Dev Biol. 2010;21(6):582–92.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Saftig P, Reiss K. The “A Disintegrin And Metalloproteases ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol. 2011;90(6–7):527–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, et al. An essential role for ectodomain shedding in mammalian development. Science. 1998;282(5392):1281–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Cancello G, Maisonneuve P, Rotmensz N, Viale G, Mastropasqua MG, Pruneri G, et al. Progesterone receptor loss identifies Luminal B breast cancer subgroups at higher risk of relapse. Ann Oncol. 2013;24(3):661–8.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • R. Canzoneri
    • 1
  • E. Lacunza
    • 1
  • M. Isla Larrain
    • 1
  • M. V. Croce
    • 1
  • M. C. Abba
    • 1
  1. 1.Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations