Advertisement

Tumor Biology

, Volume 35, Issue 2, pp 1417–1426 | Cite as

BCL6 overexpression is associated with decreased p19ARF expression and confers an independent prognosticator in gallbladder carcinoma

  • Peir-In Liang
  • Chien-Feng Li
  • Li-Tzong Chen
  • Ding-Ping Sun
  • Tzu-Ju Chen
  • Chung-Hsi Hsing
  • Han-Ping Hsu
  • Ching-Yih Lin
Research Article

Abstract

B cell lymphoma 6 (BCL6) is a protein that is vital for lymphogenesis. Its expression has been well established in lymphoma, especially in diffuse large B-cell lymphoma. Its role in carcinogenesis is less well understood. Previous study shows that BCL6 expression may regulate p19 functions, an important regulator for the p53 pathway. No prior study has attempted to evaluate the significance of BCL6 and p19ARF expression in a large cohort of patients with gallbladder carcinomas (GBCs). We selected 164 patients with GBC and performed immunostains for BCL6 and p19ARF. BCL6 expression and p19ARF expression were evaluated using a histochemical score (H-score). We then correlated the results with various clinicopathological factors, disease-specific survival (DSS), and disease-free survival (DFS). BCL6 overexpression was significantly associated with high pT status, high TNM stage, higher histological grade (p = 0.029), vascular invasion, perineurial invasion, high Ki-67 labeling index, and low p19 expression. Importantly, BCL6 overexpression in GBC was strongly associated with worse DSS (p < 0.0001) and DFS (p < 0.0001) in the univariate analysis, and remained independently predictive of adverse outcomes (p = 0.001, hazard ratio (H.R.) = 3.098 for DSS; p = 0.002, H.R. = 2.255 for DFS). Low p19ARF expression was correlated with a poor DSS (p = 0.0144) and DFS (p = 0.0032) in the univariate analysis but was not prognosticatory in the multivariate analysis. In GBC, BCL6 overexpression correlated with adverse phenotypes and decreased p19ARF expression. BCL6 overexpression also independently predicts worse DSS and DFS, suggesting it has a role in tumorigenesis or carcinogenesis and could be a potential prognostic indicator in GBC.

Keywords

Gallbladder carcinoma BCL6 p19ARF Prognosis 

Notes

Acknowledgments

This work was supported by grants (NSC101-2320-B-384-001-MY3) from the National Science Council, Taiwan, (100-TMP-009-3 and DOH101-TD-C-111-004) Department of Health, Taiwan, and (100CM-TMU-01) Chi Mei Medical Center, Tainan, Taiwan. The authors also appreciate the BioBank of Chi Mei medical Center to provide the tumor samples.

Conflicts of interest

None

References

  1. 1.
    Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer. 2006;367(118):1591–602.CrossRefGoogle Scholar
  2. 2.
    Wistuba II, Gazdar AF. Gallbladder cancer: lessons from a rare tumour. Nat Rev Cancer. 2004;4:695–706.PubMedCrossRefGoogle Scholar
  3. 3.
    Boutros C, Gary M, Baldwin K, Somasundar P. Gallbladder cancer: past, present and an uncertain future. Surg Oncol. 2012;21:e183–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Dutta U. Gallbladder cancer: can newer insights improve the outcome? J Gastroenterol Hepatol. 2012;27:642–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Coburn NG, Cleary SP, Tan JC, Law CH. Surgery for gallbladder cancer: a population-based analysis. J Am Coll Surg. 2008;207:371–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Gourgiotis S, Kocher HM, Solaini L, Yarollahi A, Tsiambas E, Salemis NS. Gallbladder cancer. Am J Surg. 2008;196:252–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Ozenne P, Eymin B, Brambilla E, Gazzeri S. The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer. 2010;127:2239–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Silva J, Domínguez G, Silva JM, García JM, Gallego I, Corbacho C, et al. Analysis of genetic and epigenetic processes that influence p14ARF expression in breast cancer. Oncogene. 2001;20:4586–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Hsu HS, Wang YC, Tseng RC, Chang JW, Chen JT, Shih CM, et al. 5' cytosine-phospho-guanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53 overexpression in resected non-small cell lung cancer. Clin Cancer Res. 2004;10:4734–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee M, Sup Han W, Kyoung Kim O, Hee Sung S, Sun Cho M, Lee SN, et al. Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol Res Pract. 2006;202:415–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Jardin F, Ruminy P, Bastard C, Tilly H. The BCL6 proto-oncogene: a leading role during germinal center development and lymphomagenesis. Pathol Biol (Paris). 2007;55:73–83.CrossRefGoogle Scholar
  12. 12.
    Wagner SD, Ahearne M, Ko FP. The role of BCL6 in lymphomas and routes to therapy. Br J Haematol. 2011;152:3–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Shvarts A, Brummelkamp TR, Scheeren F, Koh E, Daley GQ, Spits H, et al. A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19(ARF)-p53 signaling. Genes Dev. 2002;16:681–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Pinto AE, André S, Silva G, Vieira S, Santos AC, Dias S, et al. BCL-6 oncoprotein in breast cancer: loss of expression in disease progression. Pathobiology. 2009;76:235–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Lin Z, Kim H, Park H, Kim Y, Cheon J, Kim I. The expression of bcl-2 and bcl-6 protein in normal and malignant transitional epithelium. Urol Res. 2003;31:272–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Sun DP, Lin CY, Tian YF, Chen LT, Lin LC, Lee SW, et al. Clinicopathological significance of HuR expression in gallbladder carcinoma: with special emphasis on the implications of its nuclear and cytoplasmic expression. Tumour Biol. 2013. doi: 10.1007/s13277-013-0872-2.Google Scholar
  17. 17.
    Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, et al. Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res. 1986;46:5419–25.PubMedGoogle Scholar
  18. 18.
    McClelland RA, Finlay P, Walker KJ, Nicholson D, Robertson JF, Blamey RW, et al. Automated quantitation of immunocytochemically localized estrogen receptors in human breast cancer. Cancer Res. 1990;50:3545–50.PubMedGoogle Scholar
  19. 19.
    Kanazawa N, Moriyama M, Onizuka T, Sugawara K, Mori S. Expression of bcl-6 protein in normal skin and epidermal neoplasms. Pathol Int. 1997;47:600–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Cho HY, Park HS, Lin Z, Kim I, Joo KJ, Cheon J. BCL6 gene mutations in transitional cell carcinomas. J Int Med Res. 2007;35:224–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Logarajah S, Hunter P, Kraman M, Steele D, Lakhani S, Bobrow L, et al. BCL-6 is expressed in breast cancer and prevents mammary epithelial differentiation. Oncogene. 2003;22:5572–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Bos R, van Diest PJ, van der Groep P, Greijer AE, Hermsen MA, Heijnen I, et al. Protein expression of B-cell lymphoma gene 6 (BCL-6) in invasive breast cancer is associated with cyclin D1 and hypoxia-inducible factor-1alpha (HIF-1alpha). Oncogene. 2003;22:8948–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Gorunova L, Parada LA, Limon J, Jin Y, Hallén M, Hägerstrand I, et al. Nonrandom chromosomal aberrations and cytogenetic heterogeneity in gallbladder carcinomas. Genes Chromosomes Cancer. 1999;26:312–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Zhong S, Matthews M, et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell. 2010;17:400–11.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Duy C, Hurtz C, Shojaee S, Cerchietti L, Geng H, Swaminathan S, et al. BCL6 enables Ph + acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature. 2011;473:384–8.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Sailasree R, Abhilash A, Sathyan KM, Nalinakumari KR, Thomas S, Kannan S. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol Biomarkers Prev. 2008;17:414–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Kwong RA, Kalish LH, Nguyen TV, Kench JG, Bova RJ, Cole IE, et al. p14ARF protein expression is a predictor of both relapse and survival in squamous cell carcinoma of the anterior tongue. Clin Cancer Res. 2005;11:4107–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Dominguez G, Silva J, Garcia JM, Silva JM, Rodriguez R, Muñoz C, et al. Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutat Res. 2003;530:9–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Tsujimoto H, Hagiwara A, Sugihara H, Hattori T, Yamagishi H. Promoter methylations of p16INK4a and p14ARF genes in early and advanced gastric cancer. Correlations of the modes of their occurrence with histologic type. Pathol Res Pract. 2002;198:785–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Simon M, Voss D, Park-Simon TW, Mahlberg R, Köster G. Role of p16 and p14ARF in radio- and chemosensitivity of malignant gliomas. Oncol Rep. 2006;16:127–32.PubMedGoogle Scholar
  31. 31.
    Suzuki H, Kurita M, Mizumoto K, Moriyama M, Aiso S, Nishimoto I, et al. The ARF tumor suppressor inhibits BCL6-mediated transcriptional repression. Biochem Biophys Res Commun. 2005;326:242–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Fatyol K, Szalay AA. The p14ARF tumor suppressor protein facilitates nucleolar sequestration of hypoxia-inducible factor-1alpha (HIF-1alpha) and inhibits HIF-1-mediated transcription. J Biol Chem. 2001;276:28421–9.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Peir-In Liang
    • 1
  • Chien-Feng Li
    • 2
    • 3
    • 4
    • 5
  • Li-Tzong Chen
    • 3
    • 6
  • Ding-Ping Sun
    • 7
  • Tzu-Ju Chen
    • 2
  • Chung-Hsi Hsing
    • 8
    • 9
  • Han-Ping Hsu
    • 10
  • Ching-Yih Lin
    • 11
    • 12
  1. 1.Department of Pathology, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiung 807Taiwan
  2. 2.Department of PathologyChi-Mei Foundation Medical CenterTainan City 710Taiwan
  3. 3.National Institute of Cancer ResearchNational Health Research InstitutesTainan City 704Taiwan
  4. 4.Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiung 807Taiwan
  5. 5.Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainan City 710Taiwan
  6. 6.Department of Internal Medicine, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiung 807Taiwan
  7. 7.Division of General Surgery, Department of SurgeryChi-Mei Medical CenterTainan City 710Taiwan
  8. 8.Department of AnesthesiologyChi-Mei Medical CenterTainan City 710Taiwan
  9. 9.College of MedicineTaipei Medical UniversityTaipei City 110Taiwan
  10. 10.College of MedicineChina Medical UniversityTaichung City 404Taiwan
  11. 11.Division of Gastroenterology and Hepatology, Department of Internal MedicineChi-Mei Foundation Medical CenterTainan City 710Taiwan
  12. 12.Department of Leisure, Recreation, and Tourism ManagementSouthern Taiwan University of Science and TechnologyTainan City 710Taiwan

Personalised recommendations