Tumor Biology

, Volume 35, Issue 2, pp 1389–1395 | Cite as

Three polymorphisms of DNA repair gene XRCC1 and the risk of glioma: a case–control study in northwest China

  • Gaofeng Xu
  • Maode Wang
  • Wanfu Xie
  • Xiaobin Bai
Research Article


Three polymorphisms of X-ray repair cross-complementing groups 1 (XRCC1) Arg194Trp, Arg280His, and Arg399Gln may be associated with the individual susceptibility to glioma. The aim of this study was to investigate any association between three polymorphisms of the XRCC1 gene at codon 194, 280, and 399 and potential glioma risk. We conducted a hospital-based case–control study in northwest China. A total of 1,772 subjects, including 886 glioma patients and 886 healthy controls, were recruited in this study. The peripheral blood samples were extracted. Polymerase chain reaction–restriction fragment length polymorphism method was used to test genotypes. Glioma patients had a significantly higher frequency of XRCC1 194 TT (odds ratio [OR] = 1.76, 95 % confidence interval [CI] = 1.14, 2.72; P = 0.01) and XRCC1 399 AA genotype (OR = 1.62, 95 % CI = 1.09, 2.40; P = 0.02) than controls. When stratified by the grade of glioma, patients with WHO IV glioma had a significantly higher frequency of XRCC1 194 TT (OR = 1.60, 95 % CI = 1.02, 2.51; P = 0.04) and XRCC1 399 AA genotype (OR = 1.59, 95 % CI = 1.04, 2.42; P = 0.03). When stratified by the histology of glioma, there was no significant difference in the distribution of each genotype. This study suggested that XRCC1 Arg194Trp and Arg399Gln polymorphisms were associated with the risk of glioma.


XRCC1 Glioma Polymorphism 



X-ray repair cross-complementing groups 1


Polymerase chain reaction restriction fragment length polymorphism


Odds ratio


Confidence interval


Genome-wide association studies


Single-nucleotide polymorphisms


Base excision repair


Conflicts of interest

No competing interests.

Ethical approval

Informed consent was obtained from all subjects that participated in this study according to the Declaration of Helsinki. This study was approved by the institutional review board of the Xi’an Jiaotong University.


  1. 1.
    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.PubMedCrossRefGoogle Scholar
  2. 2.
    Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109:93–108.PubMedCrossRefGoogle Scholar
  3. 3.
    Jakola AS, Myrmel KS, Kloster R, Torp SH, Lindal S, Unsgard G, et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA. 2012;308:1881–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Reuss D, von Deimling A. Hereditary tumor syndromes and gliomas. Recent Results Cancer Res. 2009;171:83–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Moore SC, Rajaraman P, Dubrow R, Darefsky AS, Koebnick C, Hollenbeck A, et al. Height, body mass index, and physical activity in relation to glioma risk. Cancer Res. 2009;69:8349–55.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kostron H, Swartz MR, Miller DC, Martuza RL. The interaction of hematoporphyrin derivative, light, and ionizing radiation in a rat glioma model. Cancer. 1986;57:964–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Hocking B. Occupational exposure to ionizing and non-ionizing radiation and risk of glioma. Occup Med (Lond). 2008;58:148–9. author reply 9.CrossRefGoogle Scholar
  8. 8.
    Ron E, Modan B, Boice Jr JD, Alfandary E, Stovall M, Chetrit A, et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med. 1988;319:1033–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41:899–904.PubMedCrossRefGoogle Scholar
  10. 10.
    Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the cdkn2b and rtel1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41:905–8.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Caldecott KW, Tucker JD, Stanker LH, Thompson LH. Characterization of the xrcc1-DNA ligase iii complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res. 1995;23:4836–43.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Lamerdin JE, Montgomery MA, Stilwagen SA, Scheidecker LK, Tebbs RS, Brookman KW, et al. Genomic sequence comparison of the human and mouse xrcc1 DNA repair gene regions. Genomics. 1995;25:547–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Shen MR, Jones IM, Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res. 1998;58:604–8.PubMedGoogle Scholar
  14. 14.
    Cheng CX, Xue M, Li K, Li WS. Predictive value of xrcc1 and xrcc3 gene polymorphisms for risk of ovarian cancer death after chemotherapy. Asian Pac J Cancer Prev. 2012;13:2541–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Gan Y, Li XR, Chen DJ, Wu JH. Association between polymorphisms of xrcc1 arg399gln and xpd lys751gln genes and prognosis of colorectal cancer in a Chinese population. Asian Pac J Cancer Prev. 2012;13:5721–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Ke HG, Li J, Shen Y, You QS, Yan Y, Dong HX, et al. Prognostic significance of gstp1, xrcc1 and xrcc3 polymorphisms in non-small cell lung cancer patients. Asian Pac J Cancer Prev. 2012;13:4413–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Li Y, Huang XE, Jin GF, Shen HB, Xu L. Lack of any relationship between chemotherapy toxicity in non-small cell lung cancer cases and polymorphisms in xrcc1 codon 399 or xpd codon 751. Asian Pac J Cancer Prev. 2011;12:739–42.PubMedGoogle Scholar
  18. 18.
    Pan XF, Xie Y, Loh M, Yang SJ, Wen YY, Tian Z, et al. Polymorphisms of xrcc1 and adprt genes and risk of noncardia gastric cancer in a chinese population: a case–control study. Asian Pac J Cancer Prev. 2012;13:5637–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Shuai HL, Luo X, Yan RL, Li J, Chen DL. Xrcc1 polymorphisms are associated with cervical cancer risk and response to chemotherapy: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2012;13:6423–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Wen YY, Pan XF, Loh M, Tian Z, Yang SJ, Lv SH, et al. Adprt val762ala and xrcc1 arg194trp polymorphisms and risk of gastric cancer in Sichuan of China. Asian Pac J Cancer Prev. 2012;13:2139–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu K, Su D, Lin K, Luo J, Au WW. Xrcc1 arg399gln gene polymorphism and breast cancer risk: a meta-analysis based on case–control studies. Asian Pac J Cancer Prev. 2011;12:2237–43.PubMedGoogle Scholar
  22. 22.
    Ye S, Rong J, Huang SH, Zheng ZS, Yun M, Wang SM. Xrcc1 and adprt polymorphisms associated with survival in breast cancer cases treated with chemotherapy. Asian Pac J Cancer Prev. 2012;13:4923–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao Y, Deng X, Wang Z, Wang Q, Liu Y. Genetic polymorphisms of DNA repair genes xrcc1 and xrcc3 and risk of colorectal cancer in chinese population. Asian Pac J Cancer Prev. 2012;13:665–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou YF, Zhang GB, Qu P, Zhou J, Pan HX, Hou JQ. Association between single nucleotide polymorphisms in the xrcc1 gene and susceptibility to prostate cancer in chinese men. Asian Pac J Cancer Prev. 2012;13:5241–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu L, Miao L, Ji G, Qiang F, Liu Z, Fan Z. Association between xrcc1 and xrcc3 polymorphisms and colorectal cancer risk: a meta-analysis of 23 case–control studies. Mol Biol Rep. 2013;40:3943–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuasne H, Rodrigues IS, Losi-Guembarovski R, Reis MB, Fuganti PE, Gregorio EP, et al. Base excision repair genes xrcc1 and apex1 and the risk for prostate cancer. Mol Biol Rep. 2011;38:1585–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Pan WR, Li G, Guan JH. Polymorphisms in DNA repair genes and susceptibility to glioma in a Chinese population. Int J Mol Sci. 2013;14:3314–24.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Luo KQ, Mu SQ, Wu ZX, Shi YN, Peng JC. Polymorphisms in DNA repair genes and risk of glioma and meningioma. Asian Pac J Cancer Prev. 2013;14:449–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang D, Hu Y, Gong H, Li J, Ren Y, Li G, et al. Genetic polymorphisms in the DNA repair gene xrcc1 and susceptibility to glioma in a han population in northeastern China: a case–control study. Gene. 2012;509:223–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou LQ, Ma Z, Shi XF, Yin XL, Huang KX, Jiu ZS, et al. Polymorphisms of DNA repair gene xrcc1 and risk of glioma: a case–control study in southern china. Asian Pac J Cancer Prev. 2011;12:2547–50.PubMedGoogle Scholar
  31. 31.
    Hu XB, Feng Z, Fan YC, Xiong ZY, Huang QW. Polymorphisms in DNA repair gene xrcc1 and increased genetic susceptibility to glioma. Asian Pac J Cancer Prev. 2011;12:2981–4.PubMedGoogle Scholar
  32. 32.
    Yosunkaya E, Kucukyuruk B, Onaran I, Gurel CB, Uzan M, Kanigur-Sultuybek G. Glioma risk associates with polymorphisms of DNA repair genes, xrcc1 and parp1. Br J Neurosurg. 2010;24:561–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Rajaraman P, Hutchinson A, Wichner S, Black PM, Fine HA, Loeffler JS, et al. DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma. Neuro-Oncol. 2010;12:37–48.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Liu Y, Scheurer ME, El-Zein R, Cao Y, Do KA, Gilbert M, et al. Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol Biomarkers Prev. 2009;18:204–14.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Wang LE, Bondy ML, Shen H, El-Zein R, Aldape K, Cao Y, et al. Polymorphisms of DNA repair genes and risk of glioma. Cancer Res. 2004;64:5560–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang J, Quan XF, Zhang L, Wang YC. The xrcc3 thr241met polymorphism influences glioma risk—a meta-analysis. Asian Pac J Cancer Prev. 2013;14:3169–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Fan Z, Wu Y, Shen J, Zhan R. Glutathione s-transferase m1, t1, and p1 polymorphisms and risk of glioma: a meta-analysis. Mol Biol Rep. 2013;40:1641–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Huang J, Zhang J, Zhao Y, Liao B, Liu J, Li L, et al. The arg194trp polymorphism in the xrcc1 gene and cancer risk in Chinese mainland population: a meta-analysis. Mol Biol Rep. 2011;38:4565–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Berhane N, Sobti RC, Mahdi SA. DNA repair genes polymorphism (xpg and xrcc1) and association of prostate cancer in a north Indian population. Mol Biol Rep. 2012;39:2471–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen B, Zhou Y, Yang P, Wu XT. Polymorphisms of xrcc1 and gastric cancer susceptibility: a meta-analysis. Mol Biol Rep. 2012;39:1305–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Dai L, Duan F, Wang P, Song C, Wang K, Zhang J. Xrcc1 gene polymorphisms and lung cancer susceptibility: a meta-analysis of 44 case–control studies. Mol Biol Rep. 2012;39:9535–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Hussien YM, Gharib AF, Awad HA, Karam RA, Elsawy WH. Impact of DNA repair genes polymorphism (xpd and xrcc1) on the risk of breast cancer in Egyptian female patients. Mol Biol Rep. 2012;39:1895–901.PubMedCrossRefGoogle Scholar
  43. 43.
    Tian Z, Li YL, Liu JG. Xrcc1 arg399gln polymorphism contributes to increased risk of colorectal cancer in Chinese population. Mol Biol Rep. 2013;40:4147–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Settheetham-Ishida W, Yuenyao P, Natphopsuk S, Settheetham D, Ishida T. Genetic risk of DNA repair gene polymorphisms (xrcc1 and xrcc3) for high risk human papillomavirus negative cervical cancer in northeast Thailand. Asian Pac J Cancer Prev. 2011;12:963–6.PubMedGoogle Scholar
  45. 45.
    Sun JY, Zhang CY, Zhang ZJ, Dong YF, Zhang AL, Wang ZW, et al. Association between xrcc1 gene polymorphisms and risk of glioma development: a meta-analysis. Asian Pac J Cancer Prev. 2012;13:4783–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Jiang L, Fang X, Bao Y, Zhou JY, Shen XY, Ding MH, et al. Association between the xrcc1 polymorphisms and glioma risk: a meta-analysis of case–control studies. PLoS One. 2013;8:e55597.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wei X, Chen D, Lv T. A functional polymorphism in xrcc1 is associated with glioma risk: evidence from a meta-analysis. Mol Biol Rep. 2013;40:567–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Jacobs DI, Bracken MB. Association between xrcc1 polymorphism 399 g- > a and glioma among caucasians: a systematic review and meta-analysis. BMC Med Genet. 2012;13:97.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Zhang L, Wang Y, Qiu Z, Luo J, Zhou Z, Shu W. The xrcc1 arg194trp polymorphism is not a risk factor for glioma: a meta-analysis involving 1,440 cases and 2,562 controls. Exp Ther Med. 2012;4:1057–62.PubMedCentralPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Gaofeng Xu
    • 1
  • Maode Wang
    • 1
  • Wanfu Xie
    • 1
  • Xiaobin Bai
    • 1
  1. 1.Department of Neurosurgery, The First Affiliated Hospital of Medical SchoolXi’an Jiaotong UniversityXi’anChina

Personalised recommendations