Skip to main content

Advertisement

Log in

Corticotropin-releasing factor reduces tumor volume, halts further growth, and enhances the effect of chemotherapy in 4T1 mammary carcinoma in mice

  • Research Article
  • Published:
Tumor Biology

Abstract

The present study examines the effect of the endogenous neuroendoccrine factor, corticotropin-releasing factor (CRF), alone or in combination with 5-fluorouracil (5-FU), on 4T1 mammary tumor cells in vitro and in vivo. CRF has been detected in breast cancer tissues; however, the biological effects reported in the literature are sparse and variable. We found that exogenously administered CRF significantly reduced tumor growth without influencing angiogenesis or cell death. Furthermore, CRF reduced tumor interstitial fluid pressure (Pif) and potentiated the effect of 5-FU. These results show that CRF has antitumor effect on mammary carcinoma in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Androulidaki A, Dermitzaki E, Venihaki M, Karagianni E, Rassouli O, Andreakou E, et al. Corticotropin releasing factor promotes breast cancer cell motility and invasiveness. Mol Cancer. 2009;8:30.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Arranz A, Venihaki M, Mol B, Androulidaki A, Dermitzaki E, Rassouli O, et al. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress. Mol Cancer. 2010;9:261.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Beaumont A, Marmarou A. The effect of human corticotrophin releasing factor on the formation of post-traumatic cerebral edema. Acta Neurochir Supplement. 1998;71:149–52.

    CAS  Google Scholar 

  4. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Ann Re Chem Biomol Eng. 2011;2:281–98.

    Article  CAS  Google Scholar 

  5. Ciocca DR, Puy LA, Fasoli LC, Tello O, Aznar JC, Gago FE, et al. Corticotropin-releasing hormone, luteinizing hormone-releasing hormone, growth hormone-releasing hormone, and somatostatin-like immunoreactivities in biopsies from breast cancer patients. Breast Cancer Res Treat. 1990;15:175–84.

    Article  CAS  PubMed  Google Scholar 

  6. Friman T, Gustafsson R, Stuhr LB, Chidiac J, Heldin NE, Reed RK, et al. Increased fibrosis and interstitial fluid pressure in two different types of syngeneic murine carcinoma grown in integrin beta3-subunit deficient mice. PloS One. 2012;7:e34082.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gjerde EA, Woie K, Wei ET, Reed RK. Corticotropin-releasing hormone inhibits lowering of interstitial pressure in rat trachea after neurogenic inflammation. Eur J Pharmacol. 1998;352:99–102.

    Article  CAS  PubMed  Google Scholar 

  8. Graziani G, Tentori L, Muzi A, Vergati M, Tringali G, Pozzoli G, et al. Evidence that corticotropin-releasing hormone inhibits cell growth of human breast cancer cells via the activation of CRH-R1 receptor subtype. Mol Cell Endocrinol. 2007;264:44–9.

    Article  CAS  PubMed  Google Scholar 

  9. Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. 2004;4:806–13.

    Article  CAS  PubMed  Google Scholar 

  10. Hofmann M, McCormack E, Mujic M, Rossberg M, Bernd A, Bereiter-Hahn J, et al. Increased plasma colloid osmotic pressure facilitates the uptake of therapeutic macromolecules in a xenograft tumor model. Neoplasia. 2009;11:812–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47:3039–51.

    CAS  PubMed  Google Scholar 

  12. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 1990;9:253–66.

    Article  CAS  PubMed  Google Scholar 

  13. Kaprara A, Pazaitou-Panayiotou K, Chemonidou MC, Constantinidis TC, Lambropoulou M, Koffa M, et al. Distinct distribution of corticotropin releasing factor receptors in human breast cancer. Neuropeptides. 2010;44:355–61.

    Article  CAS  PubMed  Google Scholar 

  14. Kim BJ, Jones HP. Implications of corticotropin releasing factor in targeted anticancer therapy. J Pharm Pract. 2010;23:86–90.

    Article  PubMed  Google Scholar 

  15. Klosowska-Wardega A, Hasumi Y, Burmakin M, Ahgren A, Stuhr L, Moen I, et al. Combined anti-angiogenic therapy targeting PDGF and VEGF receptors lowers the interstitial fluid pressure in a murine experimental carcinoma. PloS One. 2009;4:e8149.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Oldberg A, Kalamajski S, Salnikov AV, Stuhr L, Morgelin M, Reed RK, et al. Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc Natl Acad Sci U S A. 2007;104:13966–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev. 1991;43:425–73.

    CAS  PubMed  Google Scholar 

  18. Pietras K, Rubin K, Sjoblom T, Buchdunger E, Sjoquist M, Heldin CH, et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002;62:5476–84.

    CAS  PubMed  Google Scholar 

  19. Radulovic M, Hippel C, Spiess J. Corticotropin-releasing factor (CRF) rapidly suppresses apoptosis by acting upstream of the activation of caspases. J Neurochem. 2003;84:1074–85.

    Article  CAS  PubMed  Google Scholar 

  20. Reed RK, Rubin K. Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res. 2010;87:211–7.

    Article  CAS  PubMed  Google Scholar 

  21. Rodt SA, Reed RK, Ljungstrom M, Gustafsson TO, Rubin K. The anti-inflammatory agent alpha-trinositol exerts its edema-preventing effects through modulation of beta 1 integrin function. Circ Res. 1994;75:942–8.

    Article  CAS  PubMed  Google Scholar 

  22. Salnikov AV, Iversen VV, Koisti M, Sundberg C, Johansson L, Stuhr LB, et al. Lowering of tumor interstitial fluid pressure specifically augments efficacy of chemotherapy. FASEB J: Off Publication Fed Am Soc Exp Biol. 2003;17:1756–8.

    CAS  Google Scholar 

  23. Salnikov AV, Roswall P, Sundberg C, Gardner H, Heldin NE, Rubin K. Inhibition of TGF-beta modulates macrophages and vessel maturation in parallel to a lowering of interstitial fluid pressure in experimental carcinoma. Lab Invest. 2005;85:512–21.

    Article  CAS  PubMed  Google Scholar 

  24. Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013. doi:10.1016/j.jsbmb.2013.02.006.

    Google Scholar 

  25. Stuhr LE, Moen I, Nedrebo T, Salnikov AV, Wiig H, Rubin K, et al. Peritumoral TNFalpha administration influences tumour stroma structure and physiology independently of growth in DMBA-induced mammary tumours. Scand J Clin Lab Invest. 2008;68:602–11.

    Article  CAS  PubMed  Google Scholar 

  26. Tjuvajev J, Kolesnikov Y, Joshi R, Sherinski J, Koutcher L, Zhou Y, et al. Anti-neoplastic properties of human corticotropin releasing factor: involvement of the nitric oxide pathway. In vivo. 1998;12:1–10.

    CAS  PubMed  Google Scholar 

  27. Wei ET, Gao GC. Corticotropin-releasing factor: an inhibitor of vascular leakage in rat skeletal muscle and brain cortex after injury. Regul Pept. 1991;33:93–104.

    Article  CAS  PubMed  Google Scholar 

  28. Wei ET, Thomas HA. Anti-inflammatory peptide agonists. Annu Rev Pharmacol Toxicol. 1993;33:91–108.

    Article  CAS  PubMed  Google Scholar 

  29. Wei ET, Thomas HA, Christian HC, Buckingham JC, Kishimoto T. d-Amino acid-substituted analogs of corticotropin-releasing hormone (CRH) and urocortin with selective agonist activity at CRH1 and CRH2beta receptors. Peptides. 1998;19:1183–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from The Research Council of Norway.

Conflicts of interest

E.T. Wei is part holder in two US patents (06803359 and 063319900) on the use of CRF analogs for the inhibition of abnormal cell growth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf K. Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuhr, L.E.B., Wei, E.T. & Reed, R.K. Corticotropin-releasing factor reduces tumor volume, halts further growth, and enhances the effect of chemotherapy in 4T1 mammary carcinoma in mice. Tumor Biol. 35, 1365–1370 (2014). https://doi.org/10.1007/s13277-013-1186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1186-0

Keywords

Navigation