Skip to main content

Advertisement

Log in

Functional MUC4 suppress epithelial–mesenchymal transition in lung adenocarcinoma metastasis

  • Research Article
  • Published:
Tumor Biology

Abstract

The mucin MUC4 is a high molecular weight membrane-bound transmembrane glycoprotein that is frequently detected in invasive and metastatic cancer. The overexpression of MUC4 is associated with increased risks for several types of cancer. However, the functional role of MUC4 is poorly understood in lung adenocarcinoma. Using antisense-MUC4-RNA transfected adenocarcinoma cells, we discovered that the loss of MUC4 expression results in epithelial–mesenchymal transition (EMT). We found morphological alterations and the repression of the epithelial marker E-cadherin in transfected cells. Additionally, the loss of MUC4 caused the upregulation of the mesenchymal marker vimentin compared to control cells. Using a MUC4-knockdown versus control LTEP xenograft mice model (129/sv mice), we also found that EMT happened in lung tissues of MUC4-knockdown-LTEP xenograft mice. Moreover, antisense-MUC4-RNA transfected cells had a significantly increased cellular migration ability in vitro. The loss of MUC4 also occurred in lung adenocarcinoma patients with lymph node metastases. We further investigated MUC4 and found that it plays a critical role in regulating EMT by modulating β-catenin. Taken together, our study reveals a novel role for MUC4 in suppressing EMT and suggests that the assessment of MUC4 may function as a prognostic biomarker and could be a potential therapeutic target for lung adenocarcinoma metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakamura N et al. Identification of tumour markers and differentiation markers for molecular diagnosis of lung adenocarcinoma. Oncogene. 2006;25(30):4245–55.

    Article  CAS  PubMed  Google Scholar 

  2. Feldser DM et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature. 2010;468(7323):572–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chaffer CL, Thompson EW, Williams ED. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs. 2007;185(1–3):7–19.

    Article  PubMed  Google Scholar 

  4. Kyprianou N. ASK-ing EMT not to spread cancer. Proc Natl Acad Sci U S A. 2010;107(7):2731–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Shintani Y et al. Epithelial to mesenchymal transition is a determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann Thorac Surg. 2011;92(5):1794–804. discussion 1804.

    Article  PubMed  Google Scholar 

  6. Sato M, Shames DS, Hasegawa Y. Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis. Respirology. 2012;17(7):1048–59.

    Article  PubMed  Google Scholar 

  7. Kim AN et al. Fyn mediates transforming growth factor-beta1-induced downregulation of E-cadherin in human A549 lung cancer cells. Biochem Biophys Res Commun. 2011;407(1):181–4.

    Article  CAS  PubMed  Google Scholar 

  8. Puisieux A. Role of epithelial-mesenchymal transition in tumour progression. Bull Acad Natl Med. 2009;193(9):2017–32. discussion 2032–4.

    CAS  PubMed  Google Scholar 

  9. Lee JM et al. The epithelial–mesenchymal transition: new insights in signalling, development, and disease. J Cell Biol. 2006;172(7):973–81.

    Article  CAS  PubMed  Google Scholar 

  10. Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nozawa N et al. Immunohistochemical alpha- and beta-catenin and E-cadherin expression and their clinicopathological significance in human lung adenocarcinoma. Pathol Res Pract. 2006;202(9):639–50.

    Article  CAS  PubMed  Google Scholar 

  12. Kwon KY et al. MUC4 expression in non-small cell lung carcinomas: relationship to tumour histology and patient survival. Arch Pathol Lab Med. 2007;131(4):593–8.

    CAS  PubMed  Google Scholar 

  13. Carraway KL et al. Muc4/sialomucin complex in the mammary gland and breast cancer. J Mammary Gland Biol Neoplasia. 2001;6(3):323–37.

    Article  CAS  PubMed  Google Scholar 

  14. Singh AP et al. Inhibition of MUC4 expression suppresses pancreatic tumour cell growth and metastasis. Cancer Res. 2004;64(2):622–30.

    Article  CAS  PubMed  Google Scholar 

  15. Ogata S et al. Mucin gene expression in colonic tissues and cell lines. Cancer Res. 1992;52(21):5971–8.

    CAS  PubMed  Google Scholar 

  16. Lopez-Ferrer A et al. MUC4 expression is increased in dysplastic cervical disorders. Hum Pathol. 2001;32(11):1197–202.

    Article  CAS  PubMed  Google Scholar 

  17. Shibahara H et al. MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology. 2004;39(1):220–9.

    Article  CAS  PubMed  Google Scholar 

  18. Majhi PD et al. Pathobiological implications of MUC4 in non-small-cell lung cancer. J Thorac Oncol. 2013;8(4):398–407.

    Article  CAS  PubMed  Google Scholar 

  19. Giuntoli RN et al. Mucin gene expression in ovarian cancers. Cancer Res. 1998;58(23):5546–50.

    CAS  PubMed  Google Scholar 

  20. Weed DT et al. MUC4 and ErbB2 expression in squamous cell carcinoma of the upper aerodigestive tract: correlation with clinical outcomes. Laryngoscope. 2004;114(8 Pt 2 Suppl 101):1–32.

    Article  CAS  PubMed  Google Scholar 

  21. Weed DT et al. MUC4 and ERBB2 expression in major and minor salivary gland mucoepidermoid carcinoma. Head Neck. 2004;26(4):353–64.

    Article  PubMed  Google Scholar 

  22. Braun J et al. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene. 2010;29(29):4237–44.

    Article  CAS  PubMed  Google Scholar 

  23. Vuoriluoto K et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30(12):1436–48.

    Article  CAS  PubMed  Google Scholar 

  24. Kupferman ME et al. TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene. 2010;29(14):2047–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hiscox S et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer. 2006;118(2):290–301.

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Zhou BP. Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer. 2011;11:49.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C et al. The function of SARI in modulating epithelial–mesenchymal transition and lung adenocarcinoma metastasis. PLoS One. 2012;7(9):e38046.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Horn G et al. ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumour cells induced by truncated MUC1. Exp Cell Res. 2009;315(8):1490–504.

    Article  CAS  PubMed  Google Scholar 

  30. Ponnusamy MP et al. MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene. 2010;29(42):5741–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Conacci-Sorrell M et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signalling, Slug, and MAPK. J Cell Biol. 2003;163(4):847–57.

    Article  CAS  PubMed  Google Scholar 

  32. Asnaghi L et al. E-cadherin negatively regulates neoplastic growth in non-small cell lung cancer: role of Rho GTPases. Oncogene. 2010;29(19):2760–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lee W et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature. 2010;465(7297):473–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hata A et al. Erlotinib after Gefitinib failure in relapsed non-small cell lung cancer: clinical benefit with optimal patient selection. Lung Cancer. 2011;74(2):268–73.

    Article  PubMed  Google Scholar 

  35. Longo F et al. Long-term survival in a smoking Caucasian male patient treated with Gefitinib for spinal cord compression secondary to lung cancer. Onkologie. 2011;34(6):326–8.

    Article  PubMed  Google Scholar 

  36. Rich AL et al. How do patient and hospital features influence outcomes in small-cell lung cancer in England? Br J Cancer. 2011;105(6):746–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Weng JH et al. Pituitary FDG uptake in a patient of lung cancer with bilateral adrenal metastases causing adrenal cortical insufficiency. Clin Nucl Med. 2011;36(8):731–2.

    Article  PubMed  Google Scholar 

  38. Tsutsumida H et al. MUC4 expression correlates with poor prognosis in small-sized lung adenocarcinoma. Lung Cancer. 2007;55(2):195–203.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yang Wang (Tianjin Medical University of Cancer Institute and Hospital, Tianjin, China) for the assistance on the revision of the manuscript.

Conflicts of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changli Wang.

Additional information

Liuwei Gao and Jun Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 4376 kb)

ESM 2

(TIFF 744 kb)

ESM 3

(JPEG 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Liu, J., Zhang, B. et al. Functional MUC4 suppress epithelial–mesenchymal transition in lung adenocarcinoma metastasis. Tumor Biol. 35, 1335–1341 (2014). https://doi.org/10.1007/s13277-013-1178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1178-0

Keywords

Navigation