Advertisement

Tumor Biology

, Volume 35, Issue 1, pp 837–844 | Cite as

MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2

  • Rui Zhang
  • Min Li
  • Wenqiao Zang
  • Xudong Chen
  • Yuanyuan Wang
  • Ping Li
  • Yuwen Du
  • Guoqiang ZhaoEmail author
  • Li LiEmail author
Research Article

Abstract

Our previous studies have revealed that miR-148a is downregulated in pancreatic cancer. Bioinformatics analysis has shown cholecystokinin-B receptor (CCKBR) and B cell lymphoma (Bcl-2) to be potential targets of miR-148a. But the pathophysiologic role of miR-148a and its relevance to the growth and development of pancreatic cancer are yet to be investigated. The purpose of this study is to elucidate the molecular mechanisms where miR-148a acts as a tumor suppressor in pancreatic cancer. Our results showed significant downregulation of miR-148a in 28 pancreatic cancer tissue samples and five pancreatic cancer cell lines, compared with their non-tumor counterparts by qRT-PCR. MiR-148a was found to not only inhibit the proliferation of pancreatic cancer cells (PANC-1 and AsPC-1) in vitro by MTT assay and colony formation assay, but also to promote cells apoptosis in vitro by Annexin V-FITC apoptosis detection and caspase activity assay. Using western blot and luciferase activity assay, CCKBR and Bcl-2 were identified as targets of miR-148a. Moreover, we also found that the expression of Bcl-2 lacking in 3′UTR could abrogate the pro-apoptosis function of miR-148a. These findings suggest the importance of miR-148a’s targeting of CCKBR and Bcl-2 in the regulation of pancreatic cancer growth and apoptosis.

Keywords

miR-148a Pancreatic cancer Cholecystokinin-B receptor Bcl-2 

Notes

Conflicts of interest

None

References

  1. 1.
    Colucci R, Blandizzi C, Tanini M, Vassalle C, Breschi MC, Del Tacca M. Gastrin promotes human colon cancer cell growth via CCK-2 receptor-mediated cyclooxygenase-2 induction and prostaglandin E2 production. Br J Pharmacol. 2005;144(3):338–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Yu HG, Tong SL, Ding YM, Ding J, Fang XM, Zhang XF, et al. Enhanced expression of cholecystokinin-2 receptor promotes the progression of colon cancer through activation of focal adhesion kinase. Int J Cancer. 2006;119(12):2724–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Jin G, Ramanathan V, Quante M, Baik GH, Yang X, Wang SS, et al. Inactivating cholecystokinin-2 receptor inhibits progastrin-dependent colonic crypt fission, proliferation, and colorectal cancer in mice. J Clin Invest. 2009;119(9):2691–701.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Smith AM, Watson SA. Gastrin and gastrin receptor activation: an early event in the adenoma-carcinoma sequence. Gut. 2000;47(6):820–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith AM, Watson SA. Review article: gastrin and colorectal cancer. Aliment Pharmacol Ther. 2000;14(10):1231–47.PubMedCrossRefGoogle Scholar
  6. 6.
    Takaishi S, Cui G, Frederick DM, Carlson JE, Houghton J, Varro A, et al. Synergistic inhibitory effects of gastrin and histamine receptor antagonists on Helicobacter-induced gastric cancer. Gastroenterology. 2005;128(7):1965–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Kidd M, Siddique ZL, Drozdov I, Gustafsson BI, Camp RL, Black JW, et al. The CCK (2) receptor antagonist, YF476, inhibits Mastomys ECL cell hyperplasia and gastric carcinoid tumor development. Regul Pept. 2010;162(1–3):52–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhou JJ, Chen ML, Zhang QZ, Zao Y, Xie Y. Blocking gastrin and CCK-B autocrine loop affects cell proliferation and apoptosis in vitro. Mol Cell Biochem. 2010;343(1–2):133–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Savage K, Waller HA, Stubbs M, Khan K, Watson SA, Clarke PA, et al. Targeting of cholecystokinin B/gastrin receptor in colonic, pancreatic and hepatocellular carcinoma cell lines. Int J Oncol. 2006;29(6):1429–35.PubMedGoogle Scholar
  10. 10.
    Morton M, Prendergast C, Barrett TD. Targeting gastrin for the treatment of gastric acid related disorders and pancreatic cancer. Trends Pharmacol Sci. 2011;32(4):201–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Cayrol C, Clerc P, Bertrand C, Gigoux V, Portolan G, Fourmy D, et al. Cholecystokinin-2 receptor modulates cell adhesion through beta 1-integrin in human pancreatic cancer cells. Oncogene. 2006;25(32):4421–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith JP, Harms JF, Matters GL, McGovern CO, Ruggiero FM, Liao J, et al. A single nucleotide polymorphism of the cholecystokinin-B receptor predicts risk for pancreatic cancer. Cancer Biol Ther. 2012;13(3):164–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Fino KK, Matters GL, McGovern CO, Gilius EL, Smith JP. Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis. Am J Physiol Gastrointest Liver Physiol. 2012;302(11):G1244–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer. 2009;9(7):501–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Sun CY, Wang BL, Hu CQ, Peng RY, Gao YB, Gu QY, et al. Expression of the bcl-2 gene and its significance in human pancreatic carcinoma. Hepatobiliary Pancreat Dis Int. 2002;1(2):306–8.PubMedGoogle Scholar
  16. 16.
    Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005;309(5740):1519–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(Spec No 1):R17–29.PubMedCrossRefGoogle Scholar
  18. 18.
    Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94(6):776–80.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer. 2010;9:16.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Pritchard DM, Berry D, Przemeck SM, Campbell F, Edwards SW, Varro A. Gastrin increases mcl-1 expression in type I gastric carcinoid tumors and a gastric epithelial cell line that expresses the CCK-2 receptor. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G798–805.PubMedCrossRefGoogle Scholar
  23. 23.
    Bierkamp C, Bonhoure S, Mathieu A, Clerc P, Fourmy D, Pradayrol L, et al. Expression of cholecystokinin-2/gastrin receptor in the murine pancreas modulates cell adhesion and cell differentiation in vivo. Am J Pathol. 2004;165(6):2135–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao MD, Hu XM, Sun DJ, Zhang Q, Zhang YH, Meng W. Expression of some tumor associated factors in human carcinogenesis and development of gastric carcinoma. World J Gastroenterol. 2005;11(21):3217–21.PubMedGoogle Scholar
  25. 25.
    Cui G, Takaishi S, Ai W, Betz KS, Florholmen J, Koh TJ, et al. Gastrin-induced apoptosis contributes to carcinogenesis in the stomach. Lab Invest. 2006;86(10):1037–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Hellmich MR, Rui XL, Hellmich HL, Fleming RY, Evers BM, Townsend Jr CM. Human colorectal cancers express a constitutively active cholecystokinin-B/gastrin receptor that stimulates cell growth. J Biol Chem. 2000;275(41):32122–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Chao C, Han X, Ives K, Park J, Kolokoltsov AA, Davey RA, et al. CCK2 receptor expression transforms non-tumorigenic human NCM356 colonic epithelial cells into tumor forming cells. Int J Cancer. 2010;126(4):864–75.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Clerc P, Leung-Theung-Long S, Wang TC, Dockray GJ, Bouisson M, Delisle MB, et al. Expression of CCK2 receptors in the murine pancreas: proliferation, transdifferentiation of acinar cells, and neoplasia. Gastroenterology. 2002;122(2):428–37.PubMedCrossRefGoogle Scholar
  29. 29.
    Watson SA, Clarke PA, Morris TM, Caplin ME. Antiserum raised against an epitope of the cholecystokinin B/gastrin receptor inhibits hepatic invasion of a human colon tumor. Cancer Res. 2000;60(20):5902–7.PubMedGoogle Scholar
  30. 30.
    Schally AV, Szepeshazi K, Nagy A, Comaru-Schally AM, Halmos G. New approaches to therapy of cancers of the stomach, colon and pancreas based on peptide analogs. Cell Mol Life Sci. 2004;61(9):1042–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Sun WH, Zhu F, Chen GS, Su H, Luo C, Zhao QS, et al. Blockade of cholecystokinin-2 receptor and cyclooxygenase-2 synergistically induces cell apoptosis, and inhibits the proliferation of human gastric cancer cells in vitro. Cancer Lett. 2008;263(2):302–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Mohammad RM, Wang S, Banerjee S, Wu X, Chen J, Sarkar FH. Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (−)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line. Pancreas. 2005;31(4):317–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324–37.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Bae IH, Park MJ, Yoon SH, Kang SW, Lee SS, Choi KM, et al. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res. 2006;66(10):4991–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Neri A, Marrelli D, Roviello F, DeMarco G, Mariani F, DeStefano A, et al. Bcl-2 expression correlates with lymphovascular invasion and long-term prognosis in breast cancer. Breast Cancer Res Treat. 2006;99(1):77–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Choi J, Choi K, Benveniste EN, Rho SB, Hong YS, Lee JH, et al. Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res. 2005;65(13):5554–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang Z, Song W, Aboukameel A, Mohammad M, Wang G, Banerjee S, et al. TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and invasion in pancreatic cancer. Int J Cancer. 2008;123(4):958–66.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Giovannetti E, Mey V, Nannizzi S, Pasqualetti G, Del Tacca M, Danesi R. Pharmacogenetics of anticancer drug sensitivity in pancreatic cancer. Mol Cancer Ther. 2006;5(6):1387–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Garcea G, Neal CP, Pattenden CJ, Steward WP, Berry DP. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur J Cancer. 2005;41(15):2213–36.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Rui Zhang
    • 1
  • Min Li
    • 2
  • Wenqiao Zang
    • 2
  • Xudong Chen
    • 3
  • Yuanyuan Wang
    • 2
  • Ping Li
    • 4
  • Yuwen Du
    • 2
  • Guoqiang Zhao
    • 2
    Email author
  • Li Li
    • 1
    Email author
  1. 1.Department of EmergencyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.College of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
  3. 3.Department of Histology and EmbryologyLuohe Medical CollegeLuoheChina
  4. 4.Department of RespiratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations