Tumor Biology

, Volume 35, Issue 1, pp 831–835 | Cite as

A let-7 KRAS rs712 polymorphism increases colorectal cancer risk

  • Xin-Min Pan
  • Rui-Fen Sun
  • Zhao-Hui Li
  • Xiao-Min Guo
  • Zhen Zhang
  • Hao-Jie Qin
  • Guo-Hui Xu
  • Lin-Bo Gao
Research Article


Growing evidence has indicated that polymorphism present in the miRNA binding site of target gene can alter the ability of miRNAs to bind its target gene and modulate the development and progression of cancer. We aimed to investigate the association between let-7 KRAS rs712 polymorphism and the risk of colorectal cancer (CRC). The let-7 KRAS rs712 was analyzed in a case–control study, including 339 CRC patients and 313 age- and sex-matched controls; the relationship between the polymorphism and the clinicopathological features of CRC was also examined. Individuals carrying the let-7 KRAS rs712 TT genotype and T allele had an increased risk of developing CRC (TT vs. GG, adjusted OR = 2.18; 95 % CI, 1.00–4.77; T vs. G, adjusted OR = 1.50; 95 % CI, 1.15–1.96). Stratified analyses revealed that CRC patients with the let-7 KRAS rs712 TT genotype were more likely to have clinical stage III or IV disease (OR = 3.29, 95 % CI, 1.32–8.20) and distant metastasis (OR = 4.70, 95 % CI, 1.81–12.25). These findings provide evidence that the let-7 KRAS rs712 polymorphism may play crucial roles in the etiology of CRC.


Single nucleotide polymorphism Let-7 KRAS Colorectal cancer 



This work was supported by National Natural Science Foundation of China (no. 81302149), Natural Science Foundation of the Science and Technology Department of Henan Province (no. 132300410105), the Ph.D. Scientific Research Foundation of Henan University of Science and Technology (no. 09001492).

Conflicts of interest



  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59(6):366–78.PubMedCrossRefGoogle Scholar
  3. 3.
    Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1688–94.PubMedCrossRefGoogle Scholar
  4. 4.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Nguyen SP, Bent S, Chen YH, Terdiman JP. Gender as a risk factor for advanced neoplasia and colorectal cancer: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2009;7(6):676–81. e1-3.PubMedCrossRefGoogle Scholar
  6. 6.
    Chao A, Thun MJ, Connell CJ, McCullough ML, Jacobs EJ, Flanders WD, et al. Meat consumption and risk of colorectal cancer. JAMA. 2005;293(2):172–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Park Y, Hunter DJ, Spiegelman D, Bergkvist L, Berrino F, van den Brandt PA, et al. Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA. 2005;294(22):2849–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Harriss DJ, Atkinson G, George K, Cable NT, Reilly T, Haboubi N, et al. Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Color Dis. 2009;11(6):547–63.CrossRefGoogle Scholar
  9. 9.
    Gao LB, Rao L, Wang YY, Liang WB, Li C, Xue H, et al. The association of interleukin-16 polymorphisms with IL-16 serum levels and risk of colorectal and gastric cancer. Carcinogenesis. 2009;30(2):295–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRefGoogle Scholar
  11. 11.
    Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, et al. Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34(4):1069–75.PubMedGoogle Scholar
  12. 12.
    Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;5:29.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68(20):8535–40.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gao Y, He Y, Ding J, Wu K, Hu B, Liu Y, et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3′ untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis. 2009;30(12):2064–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis. 2008;29(7):1306–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, et al. A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22(1):104–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, et al. A let-7 microRNA-binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009;30(6):1003–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D, et al. Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J. 2010;10(5):458–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang WY, Chien YC, Wong YK, Lin YL, Lin JC. Effects of KRAS mutation and polymorphism on the risk and prognosis of oral squamous cell carcinoma. Head Neck. 2012;34(5):663–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Li Z H, Pan X M, Han B W, Guo X M, Zhang Z, Jia J, et al. A let-7 binding site polymorphism rs712 in the KRAS 3′ UTR is associated with an increased risk of gastric cancer. Tumour Biol. 2013Google Scholar
  21. 21.
    Kranenburg O. The KRAS oncogene: past, present, and future. Biochim Biophys Acta. 2005;1756(2):81–2.PubMedGoogle Scholar
  22. 22.
    Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature. 1987;327(6120):293–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Boughdady IS, Kinsella AR, Haboubi NY, Schofield PF. K-ras gene mutations in adenomas and carcinomas of the colon. Surg Oncol. 1992;1(4):275–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Esquela-Kerscher A, Slack FJ. Oncomirs–microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Vickers MM, Bar J, Gorn-Hondermann I, Yarom N, Daneshmand M, Hanson JE, et al. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis. 2012;29(2):123–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47.PubMedCrossRefGoogle Scholar
  27. 27.
    Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006;29(5):903–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, et al. A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case–control and genetic analysis. Lancet Oncol. 2011;12(4):377–86.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hollestelle A, Pelletier C, Hooning M, Crepin E, Schutte M, Look M, et al. Prevalence of the variant allele rs61764370 T>G in the 3′UTR of KRAS among Dutch BRCA1, BRCA2 and non-BRCA1/BRCA2 breast cancer families. Breast Cancer Res Treat. 2011;128(1):79–84.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Pharoah PD, Palmieri RT, Ramus SJ, Gayther SA, Andrulis IL, Anton-Culver H, et al. The role of KRAS rs61764370 in invasive epithelial ovarian cancer: implications for clinical testing. Clin Cancer Res. 2011;17(11):3742–50.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT. KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer. 2010;69(1):51–3.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3′UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17(24):7723–31.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Xin-Min Pan
    • 1
  • Rui-Fen Sun
    • 2
  • Zhao-Hui Li
    • 3
  • Xiao-Min Guo
    • 4
  • Zhen Zhang
    • 1
  • Hao-Jie Qin
    • 1
  • Guo-Hui Xu
    • 1
  • Lin-Bo Gao
    • 5
  1. 1.Department of Forensic Pathology, College of Forensic MedicineHenan University of Science and TechnologyLuoyangPeople’s Republic of China
  2. 2.Central LaboratoryYunnan University of Chinese Traditional MedicineKunmingPeople’s Republic of China
  3. 3.Secondary Department of General SurgeryLuoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyangPeople’s Republic of China
  4. 4.Department of OtolaryngologyThird Affiliated Hospital of Henan University of Science and Technology and Luo Yang East HospitalLuoyangPeople’s Republic of China
  5. 5.Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children’s Health, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations