Tumor Biology

, Volume 35, Issue 1, pp 631–640 | Cite as

Upregulation of miR-136 in human non-small cell lung cancer cells promotes Erk1/2 activation by targeting PPP2R2A

  • Sining Shen
  • Han Yue
  • Yin Li
  • Jianjun Qin
  • Ke Li
  • Ying Liu
  • Jiaxiang Wang
Research Article


MicroRNAs (miRNAs) have been integrated into cancer development and progression, because they repress translation of target genes which can be tumor suppressors and oncogenes. A number of miRNAs have been found to be closely related to human non-small cell lung cancer (NSCLC). However, the roles of miR-136 in NSCLC are still largely unknown. Here, we show that miR-136 is significantly upregulated in human NSCLC primary tumors and cell lines compared to their nontumor counterparts. Suppression of miR-136 expression in NSCLC cell line A549 inhibited both anchorage-dependent and anchorage-independent proliferation. Further studies showed that suppression of miR-136 expression attenuated phosphorylation of extracellular-signal-regulated kinase 1/2 (Erk1/2). We found that serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B α isoform (PPP2R2A, also known as B55α) was a direct target of miR-136, and suppression of miR-136 expression led to a robust increase in both mRNA and protein levels of PPP2R2A. We found that miR-136 promoted phosphorylation of Erk1/2 through inhibition of PPP2R2A expression, and forced overexpression of PPP2R2A abrogated promotion of Erk1/2 phosphorylation by miR-136. Moreover, forced overexpression of PPP2R2A abrogated the promoting effect of miR-136 on cell growth and led to a reduced growth rate of NSCLC cells. Our findings indicate that miR-136 promotes Erk1/2 phosphorylation through targeting PPP2R2A in NSCLC cells and suggest that it may serve as a therapeutic target in NSCLC therapy.


miR-136 Non-small cell lung cancer (NSCLC) Cell proliferation Extracellular-signal-regulated kinase 1/2 (Erk1/2) Serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B α isoform (PPP2R2A) 



This work was supported by the National Natural Science Foundation of China (no. 91071909).

Conflicts of interest


Supplementary material

13277_2013_1087_Fig6_ESM.jpg (24 kb)
Supplemental Fig. 1

Typical amplification plot of the U6 RNA in 37 pairs of NSCLC tissues and matched nontumor tissues obtained using quantitative RT-PCR assay. Equal amounts of RNA were used for all the samples (JPEG 24 kb)

13277_2013_1087_MOESM1_ESM.tif (1.5 mb)
High resolution image (TIFF 1544 kb)
13277_2013_1087_Fig7_ESM.jpg (21 kb)
Supplemental Fig. 2

Typical amplification plot of the U6 RNA in NSCLC cell lines A549, SPC-A1, NCI-H1650, NCI-H1299 and the normal bronchial epithelial cell line 16HBE obtained using quantitative RT-PCR assay. Equal amounts of RNA were used for all the samples (JPEG 21 kb)

13277_2013_1087_MOESM2_ESM.tif (1.3 mb)
High resolution image (TIFF 1338 kb)


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Verdecchia A, Francisci S, Brenner H, et al. Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data. Lancet Oncol. 2007;8:784–96.PubMedCrossRefGoogle Scholar
  3. 3.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science. 2005;310:1817–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Yu J, Wang F, Yang GH, et al. Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun. 2006;349:59–68.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu SP, Fu RH, Yu HH, et al. MicroRNAs regulation modulated self-renewal and lineage differentiation of stem cells. Cell Transplant. 2009;18:1039–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Yang Y, Wu J, Guan H, et al. MiR-136 promotes apoptosis of glioma cells by targeting AEG-1 and Bcl-2. FEBS Lett. 2012;586:3608–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee DY, Jeyapalan Z, Fang L, et al. Expression of versican 3′-untranslated region modulates endogenous microRNA functions. PLoS One. 2010;5:e13599.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Krishna M, Narang H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci. 2008;65:3525–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–83.PubMedGoogle Scholar
  17. 17.
    Pages G, Milanini J, Richard DE, et al. Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann N Y Acad Sci. 2000;902:187–200.PubMedCrossRefGoogle Scholar
  18. 18.
    Joslin EJ, Opresko LK, Wells A, Wiley HS, Lauffenburger DA. EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. J Cell Sci. 2007;120:3688–99.PubMedCrossRefGoogle Scholar
  19. 19.
    Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.PubMedCrossRefGoogle Scholar
  21. 21.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Marks JL, Gong Y, Chitale D, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 2008;68:5524–8.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4:937–47.PubMedCrossRefGoogle Scholar
  24. 24.
    Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999;5:810–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Solit DB, Garraway LA, Pratilas CA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439:358–62.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96:111–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.PubMedCrossRefGoogle Scholar
  28. 28.
    Navarro A, Diaz T, Gallardo E, et al. Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer. J Surg Oncol. 2011;103:411–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Garofalo M, Quintavalle C, Di Leva G, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27:3845–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Skrzypski M, Dziadziuszko R, Jassem J. MicroRNA in lung cancer diagnostics and treatment. Mutat Res. 2011;717:25–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Mao X, Boyd LK, Yanez-Munoz RJ, et al. Chromosome rearrangement associated inactivation of tumour suppressor genes in prostate cancer. Am J Cancer Res. 2011;1:604–17.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Jayadeva G, Kurimchak A, Garriga J, et al. B55alpha PP2A holoenzymes modulate the phosphorylation status of the retinoblastoma-related protein p107 and its activation. J Biol Chem. 2010;285:29863–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Alvarez-Fernandez M, Halim VA, Aprelia M, Laoukili J, Mohammed S, Medema RH. Protein phosphatase 2A (B55alpha) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclin A/cyclin-dependent kinase-mediated phosphorylation. J Biol Chem. 2011;286:33029–36.PubMedCrossRefGoogle Scholar
  34. 34.
    Yan L, Guo S, Brault M, et al. The B55alpha-containing PP2A holoenzyme dephosphorylates FOXO1 in islet beta-cells under oxidative stress. Biochem J. 2012;444:239–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang W, Yang J, Liu Y, et al. PR55 alpha, a regulatory subunit of PP2A, specifically regulates PP2A-mediated beta-catenin dephosphorylation. J Biol Chem. 2009;284:22649–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem. 2008;283:1882–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Strack S. Overexpression of the protein phosphatase 2A regulatory subunit Bgamma promotes neuronal differentiation by activating the MAP kinase (MAPK) cascade. J Biol Chem. 2002;277:41525–32.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Sining Shen
    • 1
    • 3
  • Han Yue
    • 2
  • Yin Li
    • 3
  • Jianjun Qin
    • 3
  • Ke Li
    • 4
  • Ying Liu
    • 4
  • Jiaxiang Wang
    • 1
  1. 1.Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of OncologyThe First People’s Hospital of Zhengzhou CityZhengzhouChina
  3. 3.Department of Thoracic SurgeryAffiliated Tumor Hospital of Zhengzhou UniversityZhengzhouChina
  4. 4.Department of OncologyAffiliated Tumor Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations