Tumor Biology

, Volume 35, Issue 1, pp 615–621 | Cite as

Association between RAD51 gene polymorphism (-135G/C) and susceptibility of myelodysplastic syndrome and acute leukemia: evidence based on a meta-analysis

  • Ya-zhou He
  • Xin Hu
  • Xiao-sa Chi
  • Yuan-chuan Zhang
  • Xiang-Bing Deng
  • Ming-tian Wei
  • Zi-qiang Wang
  • Yan-hong Zhou
Research Article


Study results on the association between RAD51 gene -135G/C polymorphism and risk of myelodysplastic syndrome (MDS) or acute leukemia are inconsistent. A meta-analysis was conducted to identify the association. A systematic search was performed in PubMed, Embase, CNKI, VIP, Wanfang databases to collect all relevant studies until January 2013. Meta-analysis was carried out using fixed/random model by Review Manager 5.1 and STATA10.0. A total of 10 eligible studies with 2,656 patients and 3,725 controls were included in meta-analysis. Significant association was detected between -135G/C polymorphism and increased MDS risk (CC + GC vs. GG: OR = 1.46, 95 % CI = 1.11–1.92; CC vs. GC + GG: OR = 2.45, 95 % CI = 1.23–4.89), while no association was observed for acute leukemia. Subgroup analysis by subtypes of acute leukemia and ethnicity showed no significant results either. Our meta-analysis indicated that the -135G/C polymorphism might be associated with increased susceptibility of MDS. However, lack of evidence supported association of this polymorphism with acute leukemia. Additional well-designed studies with larger samples are required to verify our results.


RAD51 -135G/C Myelodyspastic syndrome Acute leukemia Meta-analysis 


Conflicts of interest



  1. 1.
    Estey EH. Prognostic factors in acute myelogenous leukemia. Leukemia. 2001;15:670–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang LL, Gao C, Chen BA. Research progress on mechanism of MDS transformation into AML. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2011;19:254–9.PubMedGoogle Scholar
  4. 4.
    Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22:240–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Bjork J, Johansson B, Broberg K, Albin M. Smoking as a risk factor for myelodysplastic syndromes and acute myeloid leukemia and its relation to cytogenetic findings: a case–control study. Leuk Res. 2009;33:788–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Lichtman MA. Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist. 2010;15:1083–101.PubMedCrossRefGoogle Scholar
  7. 7.
    Kitamura T, Watanabe-Okochi N, Inoue D, Togami K, Uchida T, Kagiyama Y, et al. Molecular mechanisms underlying leukemic transformation of myelodysplastic syndromes (MDS) and chronic myelogenous leukemia (CML). Jpn J Clin Hematol. 2012;53:734–9.Google Scholar
  8. 8.
    Finch SC. Radiation-induced leukemia: lessons from history. Best Pract Res Clin Hematol. 2007;20:109–18.CrossRefGoogle Scholar
  9. 9.
    Alexander FE, Patheal SL, Biondi A, Brandalise S, Cabrera ME, Chan LC, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res. 2001;61:2542–6.PubMedGoogle Scholar
  10. 10.
    Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Agarwal S, Tafel AA, Kanaar R. DNA double-strand break repair and chromosome translocations. DNA Repair. 2006;5:1075–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Baumann P, West SC. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci. 1998;23:247–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Thacker J. The RAD51 gene family, genetic instability, and cancer. Cancer Lett. 2005;219:125–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Wood RD, Mitchell M, Lindahl T. Human DNA repair genes, 2005. Mutat Res. 2005;577:275–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Richardson C. RAD51, genomic stability, and tumorigenesis. Cancer Lett. 2005;218:127–39.PubMedCrossRefGoogle Scholar
  16. 16.
    Kawabata M, Kawabata T, Nishibori M. Role of recA/RAD51 family proteins in mammals. Acta Med Okayama. 2005;59:1–9.PubMedGoogle Scholar
  17. 17.
    Rollinson S, Smith AG, Allan JM, Adamson PJ, Scott K, Skibola CF, et al. RAD51 homologous recombination repair gene haplotypes and risk of acute myeloid leukemia. Leukemia Res. 2007;31:169–74.CrossRefGoogle Scholar
  18. 18.
    Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res. 2004;10:2675–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Fabiani E, D’Alo F, Scardocci A, Greco M, Di Ruscio A, Criscuolo M, et al. Polymorphisms of detoxification and DNA repair enzymes in myelodyplastic syndromes. Leuk Res. 2009;33:1068–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327:557–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Li L, Yang L, Zhang Y, Xu Z, Qin T, Hao Y, et al. Detoxification and DNA repair genes polymorphisms and susceptibility of primary myelodysplastic syndromes in Chinese population. Leuk Res. 2011;35:762–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Baumann Kreuziger LM, Steensma DP. RAD51 and XRCC3 polymorphism frequency and risk of myelodysplastic syndromes. Am J Hematol. 2008;83:822–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Bhatla D, Gerbing RB, Alonzo TA, Mehta PA, Deal K, Elliott J, et al. DNA repair polymorphisms and outcome of chemotherapy for acute myelogenous leukemia: a report from the Children’s Oncology Group. Leukemia. 2008;22:265–72.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hamdy MS, El-Haddad AM, Bahaa El-Din NM, Makhlouf MM, Abdel-Hamid SM. RAD51 and XRCC3 gene polymorphisms and the risk of developing acute myeloid leukemia. J Investig Med: the official publication of the American Federation for Clinical Research. 2011;59:1124–30.Google Scholar
  25. 25.
    Voso MT, Fabiani E, D’Alo F, Guidi F, Di Ruscio A, Sica S, et al. Increased risk of acute myeloid leukemia due to polymorphisms in detoxification and DNA repair enzymes. Ann Oncol. 2007;18:1523–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang L, Liu L, Mi YC, Li JY, Ma XT, Ai XF, et al. Relationship between RAD51-G135C/XRCC3-C241T polymorphisms and development of acute myeloid leukemia with recurrent chromosome translocation. Zhonghua Xueyexue Zazhi. 2011;32:299–303.PubMedGoogle Scholar
  27. 27.
    Zhang ZQ, Yang L, Zhang Y, Yang YH, Nie L, Li L, et al. Relationship between NQO1C(609T), RAD51(G135C), XRCC3(C241T) single nucleotide polymorphisms and acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2009;17:523–8.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Ya-zhou He
    • 1
    • 2
  • Xin Hu
    • 3
  • Xiao-sa Chi
    • 1
  • Yuan-chuan Zhang
    • 2
  • Xiang-Bing Deng
    • 2
  • Ming-tian Wei
    • 2
  • Zi-qiang Wang
    • 2
  • Yan-hong Zhou
    • 4
  1. 1.West China School of Medicine/West China HospitalSichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of gastrointestinal surgery, West China HospitalSichuan UniversityChengduPeople’s Republic of China
  3. 3.Department of neurological surgery, West China HospitalSichuan UniversityChengduPeople’s Republic of China
  4. 4.Department of laboratory medicine, West China HospitalSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations