Tumor Biology

, Volume 35, Issue 1, pp 1–7 | Cite as

The circadian clock and the hypoxic response pathway in kidney cancer

  • Gianluigi Mazzoccoli
  • Angelo De Cata
  • Ada Piepoli
  • Manlio Vinciguerra


The most frequent malignant tumor of the kidney in adults is represented by renal cell carcinoma characterized by high lethality related to presence of metastatic disease at the time of diagnosis. The main characteristic molecular feature of most sporadic renal cell carcinomas is the mutation of the tumor suppressor gene encoding the von Hippel-Lindau protein, with alteration of regulated pathways and activation of hypoxia-inducible transcription factors. Hypoxia-inducible transcription factors are transcriptional regulators of genes controlling mammalian oxygen homeostasis, energy metabolism, neovascularisation, internal pH, cell survival, and migration and are considered powerful promoters of tumor growth. Tight interrelationships have been evidenced between hypoxic response pathway and circadian pathway. Severe deregulation of genes involved in the circadian clock circuitry and response to hypoxia has been found in patients affected by kidney cancer, influencing the process of carcinogenesis, as well as disease progression and outcome. The study of alterations of clock gene expression and hypoxia correlated pathway in kidney cancer may promote the comprehension of pathophysiological mechanisms involved in renal cell carcinoma onset and evolution and may help to exploit more effective therapeutic approaches.


Kidney Cancer Clock gene Circadian Rhythm Hypoxia 



We apologize for not citing all pertinent references due to space limitations. The study was supported by the “5 × 1,000” voluntary contribution by a grant (MV) from AIRC (MFAG-AIRC 2012–13419), and by “Italian Ministry of Health” grant (GM) RC1203ME46 and RC1302ME31 through Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.

Conflicts of interest



  1. 1.
    Tang PA, Vickers MM, Heng DY. Clinical and molecular prognostic factors in renal cell carcinoma: what we know so far. Hematol Oncol Clin North Am. 2011;25(4):871–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Dahinden C, Ingold B, Wild P, Boysen G, Luu VD, Montani M, et al. Mining tissue microarray data to uncover combinations of biomarker expression patterns that improve intermediate staging and grading of clear cell renal cell cancer. Clin Cancer Res. 2010;16(1):88–98.PubMedCrossRefGoogle Scholar
  3. 3.
    Frew IJ, Krek W. pVHL: a multipurpose adaptor protein. Sci Signal. 2008;1:e30.Google Scholar
  4. 4.
    Vanharanta S, Shu W, Brenet F, Hakimi AA, Heguy A, Viale A, et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med. 2013;19(1):50–6.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Semenza GL. Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life. 2008;60(9):591–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou J, Schmid T, Schnitzer S, Brune B. Tumor hypoxia and cancer progression. Cancer Lett. 2006;237(1):10–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell. 2006;22:395–405.PubMedCrossRefGoogle Scholar
  8. 8.
    Contractor H, Zariwala M, Bugert P, Zeisler J, Kovacs G. Mutation of the p53 tumour suppressor gene occurs preferentially in the chromophobe type of renal cell tumour. J Pathol. 1997;181:136–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim M, Yan Y, Lee K, Sgagias M, Cowan KH. Ectopic expression of von Hippel-Lindau tumor suppressor induces apoptosis in 786-O renal cell carcinoma cells and regresses tumor growth of 786-O cells in nude mouse. Biochem Biophys Res Commun. 2004;320:945–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Pause A, Lee S, Lonergan KM, Klausner RD. The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci U S A. 1998;95:993–8.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Maehama T, Dixon JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 1999;9:125–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22:2954–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002;8(10):1145–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Cairns P, Evron E, Okami K, Halachmi N, Esteller M, Herman JG, et al. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene. 1998;16(24):3215–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Shin Lee J, Seok Kim H, Bok Kim Y, Cheol Lee M, Soo PC. Expression of PTEN in renal cell carcinoma and its relation to tumor behavior and growth. J Surg Oncol. 2003;84:166–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Mazzoccoli G. The timing clockwork of life. J Biol Regul Homeost Agents. 2011;25(1):137–43. Review.PubMedGoogle Scholar
  17. 17.
    Mazzoccoli G, Pazienza V, Vinciguerra M. Clock genes and clock controlled genes in the regulation of metabolic rhythms. Chronobiol Int. 2012;29(3):227–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Mazzoccoli G, Francavilla M, Giuliani F, Aucella F, Vinciguerra M, Pazienza V, et al. Clock gene expression in mouse kidney and testis: analysis of periodical and dynamical patterns. J Biol Regul Homeost Agents. 2012;26(2):303–11.PubMedGoogle Scholar
  19. 19.
    Mazzoccoli G, Cai Y, Liu S, Francavilla M, Giuliani F, Piepoli A, et al. REV-ERBalpha and the clock gene machinery in mouse peripheral tissues: a possible role as a synchronizing hinge. J Biol Regul Homeost Agents. 2012;26(2):265–76.PubMedGoogle Scholar
  20. 20.
    Mazzoccoli G, Sothern RB, Greco G, Pazienza V, Vinciguerra M, Liu S, et al. Time-related dynamics of variation in core clock gene expression levels in tissues relevant to the immune system. Int J Immunopathol Pharmacol. 2011;24(4):869–79.PubMedGoogle Scholar
  21. 21.
    Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature. 2012;485(7396):123–7.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Ghorbel MT, Coulson JM, Murphy D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol Cell Neurosci. 2003;22(3):396–404.PubMedCrossRefGoogle Scholar
  23. 23.
    Chilov D, Hofer T, Bauer C, Wenger RH, Gassmann M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001;15:2613–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Hogenesch JB, Gu YZ, Moran SM, Shimomura K, Radcliffe LA, Takahashi JS, et al. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J Neurosci. 2000;20(13):RC83.PubMedGoogle Scholar
  25. 25.
    Kim EJ, Yoo YG, Yang WK, Lim YS, Na TY, Lee IK, et al. Transcriptional activation of HIF-1 by RORalpha and its role in hypoxia signaling. Arterioscler Thromb Vasc Biol. 2008;28(10):1796–802.PubMedCrossRefGoogle Scholar
  26. 26.
    Agostino PV, Harrington ME, Ralph MR, Golombek DA. Casein kinase-1-epsilon (CK1epsilon) and circadian photic responses in hamsters. Chronobiol Int. 2009;26:126–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Mottet D, Ruys SP, Demazy C, Raes M, Michiels C. Role for casein kinase 2 in the regulation of HIF-1 activity. Int J Cancer. 2005;117(5):764–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J Cell Sci. 2010;123(Pt 17):2976–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Fang Z, Carlson SH, Peng N, Wyss JM. Circadian rhythm of plasma sodium is disrupted in spontaneously hypertensive rats fed a high-NaCl diet. Am J Physiol Regul Integr Comp Physiol. 2000;278:R1490–5.PubMedGoogle Scholar
  30. 30.
    Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol. 2004;9:5–18.Google Scholar
  31. 31.
    Saifur Rohman M, Emoto N, Nonaka H, Okura R, Nishimura M, Yagita K, et al. Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int. 2005;67:1410–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Mazzoccoli G, Pazienza V, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, et al. ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer. J Cancer Res Clin Oncol. 2012;138(3):501–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Pazienza V, Piepoli A, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, et al. SIRT1 and the clock gene machinery in colorectal cancer. Cancer Invest. 2012;30(2):98–105.PubMedCrossRefGoogle Scholar
  34. 34.
    Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, et al. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 2011;28(10):841–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Hunt T, Sassone-Corsi P. Riding tandem: circadian clocks and the cell cycle. Cell. 2007;129:461–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen-Goodspeed M, Lee CC. Tumor suppression and circadian function. J Biol Rhythms. 2007;22:291–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee CC. Tumor suppression by the mammalian period genes. Cancer Causes Control. 2006;17:525–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL. A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One. 2009;4(3):e4798.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Gréchez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem. 2008;283(8):4535–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Smith KD, Fu MA, Brown EJ. Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J Cell Biol. 2009;187(1):15–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, et al. Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000;288(5470):1425–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P, et al. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem. 2006;281(15):10281–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Fallone F, Britton S, Nieto L, Salles B, Muller C. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene. 2012. doi: 10.1038/onc.2012.462.PubMedGoogle Scholar
  44. 44.
    Martin L, Rainey M, Santocanale C, Gardner LB. Hypoxic activation of ATR and the suppression of the initiation of DNA replication through cdc6 degradation. Oncogene. 2012;31:4076–84.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002;419(6909):841–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Ivanova AV, Ivanov SV, Danilkovitch-Miagkova A, Lerman MI. Regulation of stra13 by the von Hippel-Lindau tumor suppressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway. J Biol Chem. 2001;276:15306–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Koyanagi S, Kuramoto Y, Nakagawa H, Aramaki H, Ohdo S, Soeda S, et al. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003;63:7277–83.PubMedGoogle Scholar
  48. 48.
    Jia YF, Xiao DJ, Ma XL, Song YY, Hu R, Kong Y, et al. Differentiated embryonic chondrocyte-expressed gene 1 is associated with hypoxia-inducible factor 1α and Ki67 in human gastric cancer. Diagn Pathol. 2013;8:37.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Falasca M. PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des. 2010;16(12):1410–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Maffucci T, Raimondi C, Abu-Hayyeh S, Dominguez V, Sala G, Zachary I, et al. A phosphoinositide 3-kinase/phospholipase Cgamma1 pathway regulates fibroblast growth factor-induced capillary tube formation. PLoS One. 2009;4(12):e8285.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Mazzoccoli G, Piepoli A, Carella M, Panza A, Pazienza V, Benegiamo G, et al. Altered expression of the clock gene machinery in kidney cancer patients. Biomed Pharmacother. 2012;66(3):175–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Wagner B, Patard JJ, Méjean A, Bensalah K, Verhoest G, Zigeuner R, et al. Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur Urol. 2009;55(2):452–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Martínez-Salamanca JI, Huang WC, Millán I, Bertini R, Bianco FJ, Carballido JA, et al. International renal cell carcinoma-venous thrombus consortium. prognostic impact of the 2009 UICC/AJCC TNM staging system for renal cell carcinoma with venous extension. Eur Urol. 2011;59(1):120–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Oishi K. Plasminogen activator inhibitor-1 and the circadian clock in metabolic disorders. Clin Exp Hypertens. 2009;31(3):208–19. Review.PubMedCrossRefGoogle Scholar
  56. 56.
    Maemura K, de la Monte SM, Chin MT, Layne MD, Hsieh CM, Yet SF, et al. CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem. 2000;275(47):36847–51.PubMedCrossRefGoogle Scholar
  57. 57.
    Schoenhard JA, Smith LH, Painter CA, Eren M, Johnson CH, Vaughan DE. Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol. 2003;35(5):473–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Oishi K, Miyazaki K, Uchida D, Ohkura N, Wakabayashi M, Doi R, et al. PERIOD2 is a circadian negative regulator of PAI-1 gene expression in mice. J Mol Cell Cardiol. 2009;46(4):545–52.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Gianluigi Mazzoccoli
    • 1
  • Angelo De Cata
    • 1
  • Ada Piepoli
    • 2
  • Manlio Vinciguerra
    • 1
    • 3
    • 4
  1. 1.Department of Medical Sciences, Division of Internal Medicine and Chronobiology UnitIRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”San Giovanni RotondoItaly
  2. 2.Department of Medical Sciences, Research Laboratory and Division of Gastroenterology UnitIRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”San Giovanni RotondoItaly
  3. 3.Istituto EuroMEditerraneo di Scienza e TecnologiaPalermoItaly
  4. 4.Institute for Liver and Digestive Health, Division of Medicine, Royal Free CampusUniversity College LondonLondonUK

Personalised recommendations