Skip to main content

Advertisement

Log in

The circadian clock and the hypoxic response pathway in kidney cancer

  • Review
  • Published:
Tumor Biology

Abstract

The most frequent malignant tumor of the kidney in adults is represented by renal cell carcinoma characterized by high lethality related to presence of metastatic disease at the time of diagnosis. The main characteristic molecular feature of most sporadic renal cell carcinomas is the mutation of the tumor suppressor gene encoding the von Hippel-Lindau protein, with alteration of regulated pathways and activation of hypoxia-inducible transcription factors. Hypoxia-inducible transcription factors are transcriptional regulators of genes controlling mammalian oxygen homeostasis, energy metabolism, neovascularisation, internal pH, cell survival, and migration and are considered powerful promoters of tumor growth. Tight interrelationships have been evidenced between hypoxic response pathway and circadian pathway. Severe deregulation of genes involved in the circadian clock circuitry and response to hypoxia has been found in patients affected by kidney cancer, influencing the process of carcinogenesis, as well as disease progression and outcome. The study of alterations of clock gene expression and hypoxia correlated pathway in kidney cancer may promote the comprehension of pathophysiological mechanisms involved in renal cell carcinoma onset and evolution and may help to exploit more effective therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tang PA, Vickers MM, Heng DY. Clinical and molecular prognostic factors in renal cell carcinoma: what we know so far. Hematol Oncol Clin North Am. 2011;25(4):871–91.

    Article  PubMed  Google Scholar 

  2. Dahinden C, Ingold B, Wild P, Boysen G, Luu VD, Montani M, et al. Mining tissue microarray data to uncover combinations of biomarker expression patterns that improve intermediate staging and grading of clear cell renal cell cancer. Clin Cancer Res. 2010;16(1):88–98.

    Article  CAS  PubMed  Google Scholar 

  3. Frew IJ, Krek W. pVHL: a multipurpose adaptor protein. Sci Signal. 2008;1:e30.

    Google Scholar 

  4. Vanharanta S, Shu W, Brenet F, Hakimi AA, Heguy A, Viale A, et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med. 2013;19(1):50–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Semenza GL. Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life. 2008;60(9):591–7.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou J, Schmid T, Schnitzer S, Brune B. Tumor hypoxia and cancer progression. Cancer Lett. 2006;237(1):10–21.

    Article  CAS  PubMed  Google Scholar 

  7. Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell. 2006;22:395–405.

    Article  CAS  PubMed  Google Scholar 

  8. Contractor H, Zariwala M, Bugert P, Zeisler J, Kovacs G. Mutation of the p53 tumour suppressor gene occurs preferentially in the chromophobe type of renal cell tumour. J Pathol. 1997;181:136–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kim M, Yan Y, Lee K, Sgagias M, Cowan KH. Ectopic expression of von Hippel-Lindau tumor suppressor induces apoptosis in 786-O renal cell carcinoma cells and regresses tumor growth of 786-O cells in nude mouse. Biochem Biophys Res Commun. 2004;320:945–50.

    Article  CAS  PubMed  Google Scholar 

  10. Pause A, Lee S, Lonergan KM, Klausner RD. The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci U S A. 1998;95:993–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Maehama T, Dixon JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 1999;9:125–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22:2954–63.

    Article  CAS  PubMed  Google Scholar 

  13. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002;8(10):1145–52.

    Article  CAS  PubMed  Google Scholar 

  14. Cairns P, Evron E, Okami K, Halachmi N, Esteller M, Herman JG, et al. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene. 1998;16(24):3215–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shin Lee J, Seok Kim H, Bok Kim Y, Cheol Lee M, Soo PC. Expression of PTEN in renal cell carcinoma and its relation to tumor behavior and growth. J Surg Oncol. 2003;84:166–72.

    Article  PubMed  Google Scholar 

  16. Mazzoccoli G. The timing clockwork of life. J Biol Regul Homeost Agents. 2011;25(1):137–43. Review.

    CAS  PubMed  Google Scholar 

  17. Mazzoccoli G, Pazienza V, Vinciguerra M. Clock genes and clock controlled genes in the regulation of metabolic rhythms. Chronobiol Int. 2012;29(3):227–51.

    Article  CAS  PubMed  Google Scholar 

  18. Mazzoccoli G, Francavilla M, Giuliani F, Aucella F, Vinciguerra M, Pazienza V, et al. Clock gene expression in mouse kidney and testis: analysis of periodical and dynamical patterns. J Biol Regul Homeost Agents. 2012;26(2):303–11.

    CAS  PubMed  Google Scholar 

  19. Mazzoccoli G, Cai Y, Liu S, Francavilla M, Giuliani F, Piepoli A, et al. REV-ERBalpha and the clock gene machinery in mouse peripheral tissues: a possible role as a synchronizing hinge. J Biol Regul Homeost Agents. 2012;26(2):265–76.

    CAS  PubMed  Google Scholar 

  20. Mazzoccoli G, Sothern RB, Greco G, Pazienza V, Vinciguerra M, Liu S, et al. Time-related dynamics of variation in core clock gene expression levels in tissues relevant to the immune system. Int J Immunopathol Pharmacol. 2011;24(4):869–79.

    CAS  PubMed  Google Scholar 

  21. Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature. 2012;485(7396):123–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ghorbel MT, Coulson JM, Murphy D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol Cell Neurosci. 2003;22(3):396–404.

    Article  CAS  PubMed  Google Scholar 

  23. Chilov D, Hofer T, Bauer C, Wenger RH, Gassmann M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001;15:2613–22.

    Article  CAS  PubMed  Google Scholar 

  24. Hogenesch JB, Gu YZ, Moran SM, Shimomura K, Radcliffe LA, Takahashi JS, et al. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J Neurosci. 2000;20(13):RC83.

    CAS  PubMed  Google Scholar 

  25. Kim EJ, Yoo YG, Yang WK, Lim YS, Na TY, Lee IK, et al. Transcriptional activation of HIF-1 by RORalpha and its role in hypoxia signaling. Arterioscler Thromb Vasc Biol. 2008;28(10):1796–802.

    Article  CAS  PubMed  Google Scholar 

  26. Agostino PV, Harrington ME, Ralph MR, Golombek DA. Casein kinase-1-epsilon (CK1epsilon) and circadian photic responses in hamsters. Chronobiol Int. 2009;26:126–33.

    Article  CAS  PubMed  Google Scholar 

  27. Mottet D, Ruys SP, Demazy C, Raes M, Michiels C. Role for casein kinase 2 in the regulation of HIF-1 activity. Int J Cancer. 2005;117(5):764–74.

    Article  CAS  PubMed  Google Scholar 

  28. Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J Cell Sci. 2010;123(Pt 17):2976–86.

    Article  CAS  PubMed  Google Scholar 

  29. Fang Z, Carlson SH, Peng N, Wyss JM. Circadian rhythm of plasma sodium is disrupted in spontaneously hypertensive rats fed a high-NaCl diet. Am J Physiol Regul Integr Comp Physiol. 2000;278:R1490–5.

    CAS  PubMed  Google Scholar 

  30. Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol. 2004;9:5–18.

    Google Scholar 

  31. Saifur Rohman M, Emoto N, Nonaka H, Okura R, Nishimura M, Yagita K, et al. Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int. 2005;67:1410–9.

    Article  PubMed  Google Scholar 

  32. Mazzoccoli G, Pazienza V, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, et al. ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer. J Cancer Res Clin Oncol. 2012;138(3):501–11.

    Article  CAS  PubMed  Google Scholar 

  33. Pazienza V, Piepoli A, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, et al. SIRT1 and the clock gene machinery in colorectal cancer. Cancer Invest. 2012;30(2):98–105.

    Article  CAS  PubMed  Google Scholar 

  34. Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, et al. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 2011;28(10):841–51.

    Article  CAS  PubMed  Google Scholar 

  35. Hunt T, Sassone-Corsi P. Riding tandem: circadian clocks and the cell cycle. Cell. 2007;129:461–4.

    Article  CAS  PubMed  Google Scholar 

  36. Chen-Goodspeed M, Lee CC. Tumor suppression and circadian function. J Biol Rhythms. 2007;22:291–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lee CC. Tumor suppression by the mammalian period genes. Cancer Causes Control. 2006;17:525–30.

    Article  PubMed  Google Scholar 

  38. Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL. A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One. 2009;4(3):e4798.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Gréchez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem. 2008;283(8):4535–42.

    Article  PubMed  Google Scholar 

  40. Smith KD, Fu MA, Brown EJ. Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J Cell Biol. 2009;187(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  41. Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, et al. Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000;288(5470):1425–9.

    Article  CAS  PubMed  Google Scholar 

  42. Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P, et al. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem. 2006;281(15):10281–90.

    Article  CAS  PubMed  Google Scholar 

  43. Fallone F, Britton S, Nieto L, Salles B, Muller C. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene. 2012. doi:10.1038/onc.2012.462.

    PubMed  Google Scholar 

  44. Martin L, Rainey M, Santocanale C, Gardner LB. Hypoxic activation of ATR and the suppression of the initiation of DNA replication through cdc6 degradation. Oncogene. 2012;31:4076–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002;419(6909):841–4.

    Article  CAS  PubMed  Google Scholar 

  46. Ivanova AV, Ivanov SV, Danilkovitch-Miagkova A, Lerman MI. Regulation of stra13 by the von Hippel-Lindau tumor suppressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway. J Biol Chem. 2001;276:15306–15.

    Article  CAS  PubMed  Google Scholar 

  47. Koyanagi S, Kuramoto Y, Nakagawa H, Aramaki H, Ohdo S, Soeda S, et al. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003;63:7277–83.

    CAS  PubMed  Google Scholar 

  48. Jia YF, Xiao DJ, Ma XL, Song YY, Hu R, Kong Y, et al. Differentiated embryonic chondrocyte-expressed gene 1 is associated with hypoxia-inducible factor 1α and Ki67 in human gastric cancer. Diagn Pathol. 2013;8:37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Falasca M. PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des. 2010;16(12):1410–6.

    Article  CAS  PubMed  Google Scholar 

  51. Maffucci T, Raimondi C, Abu-Hayyeh S, Dominguez V, Sala G, Zachary I, et al. A phosphoinositide 3-kinase/phospholipase Cgamma1 pathway regulates fibroblast growth factor-induced capillary tube formation. PLoS One. 2009;4(12):e8285.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Mazzoccoli G, Piepoli A, Carella M, Panza A, Pazienza V, Benegiamo G, et al. Altered expression of the clock gene machinery in kidney cancer patients. Biomed Pharmacother. 2012;66(3):175–9.

    Article  CAS  PubMed  Google Scholar 

  53. Wagner B, Patard JJ, Méjean A, Bensalah K, Verhoest G, Zigeuner R, et al. Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur Urol. 2009;55(2):452–9.

    Article  PubMed  Google Scholar 

  54. Martínez-Salamanca JI, Huang WC, Millán I, Bertini R, Bianco FJ, Carballido JA, et al. International renal cell carcinoma-venous thrombus consortium. prognostic impact of the 2009 UICC/AJCC TNM staging system for renal cell carcinoma with venous extension. Eur Urol. 2011;59(1):120–7.

    Article  PubMed  Google Scholar 

  55. Oishi K. Plasminogen activator inhibitor-1 and the circadian clock in metabolic disorders. Clin Exp Hypertens. 2009;31(3):208–19. Review.

    Article  CAS  PubMed  Google Scholar 

  56. Maemura K, de la Monte SM, Chin MT, Layne MD, Hsieh CM, Yet SF, et al. CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem. 2000;275(47):36847–51.

    Article  CAS  PubMed  Google Scholar 

  57. Schoenhard JA, Smith LH, Painter CA, Eren M, Johnson CH, Vaughan DE. Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol. 2003;35(5):473–81.

    Article  CAS  PubMed  Google Scholar 

  58. Oishi K, Miyazaki K, Uchida D, Ohkura N, Wakabayashi M, Doi R, et al. PERIOD2 is a circadian negative regulator of PAI-1 gene expression in mice. J Mol Cell Cardiol. 2009;46(4):545–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize for not citing all pertinent references due to space limitations. The study was supported by the “5 × 1,000” voluntary contribution by a grant (MV) from AIRC (MFAG-AIRC 2012–13419), and by “Italian Ministry of Health” grant (GM) RC1203ME46 and RC1302ME31 through Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Mazzoccoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzoccoli, G., De Cata, A., Piepoli, A. et al. The circadian clock and the hypoxic response pathway in kidney cancer. Tumor Biol. 35, 1–7 (2014). https://doi.org/10.1007/s13277-013-1076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1076-5

Keywords

Navigation