Skip to main content

Advertisement

Log in

Rosiglitazone and imidapril alone or in combination alleviate muscle and adipose depletion in a murine cancer cachexia model

  • Research Article
  • Published:
Tumor Biology

Abstract

Rosiglitazone (RGZ) and imidapril improve cancer cachexia via different mechanisms. Therefore, we hypothesized that combination therapy of RGZ+imidapril would further attenuate cancer cachexia in vivo. After injection with colon-26 adenocarcinoma for 9 days, BALB/c mice were randomly divided into the following four treatment groups for 7 days (n = 8 per group): (1) placebo, (2) RGZ, (3) imidapril, and (4) RGZ+imidapril. Eight healthy control animals were also assessed. Body weight, tumor volume, gastrocnemius muscle and epididymal adipose mass, serum metabolic markers and cytokines, and the expression of nuclear factor-κB and two E3 ubiquitin ligases, atrogin-1 and MuRF-1, were measured. From days 14 to 16, all treatments significantly reduced tumor volume (P < 0.05). From days 10 to 16, improvements in the tumor-free body weight were observed in the RGZ and RGZ+imidapril groups. In addition, significant improvements in both gastrocnemius muscle and epididymal adipose mass were observed in all treatment groups (all, P < 0.05). Furthermore, all treatments significantly increased tumor necrosis factor alpha levels as compared to those observed in the healthy control animals (P < 0.001). Insulin levels significantly increased in the placebo group as compared to those in the healthy control group (P < 0.05), which were reduced in all the treatment groups (P < 0.05). Finally, whereas all treatments significantly reduced atrogin-1 levels as compared to the placebo group (all, P < 0.05), significant reductions in MuRF-1 levels were only observed in the RGZ and RGZ+imidapril groups (both, P < 0.05). Thus, all three treatments reduce tumor growth and alleviate cancer cachexia; however, synergistic effects of RGZ+imidapril combination therapy were not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793–9.

    Article  CAS  PubMed  Google Scholar 

  2. Tisdale MJ. Mechanisms of cancer cachexia. Pysiol Rev. 2009;89:381–410.

    Article  CAS  Google Scholar 

  3. Palesty JA, Dudrick SJ. What we have learned about cachexia in gastrointestinal cancer. Dig Dis. 2003;21:198–213.

    Article  CAS  PubMed  Google Scholar 

  4. Tisdale MJ. Cachexia in cancer patients. Nat Rev Cancer. 2002;2:862–71.

    Article  CAS  PubMed  Google Scholar 

  5. Khal J, Hine AV, Fearon KCH, Dejong CHC, Tisdale MJ. Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem Cell Biol. 2005;37:2196–206.

    Article  CAS  PubMed  Google Scholar 

  6. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A. 2001;98:14440–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–8.

    Article  CAS  PubMed  Google Scholar 

  8. Daneryd P, Hafstrom L, Svanberg E, Karlberg I. Insulin sensitivity, hormonal levels and skeletal muscle protein metabolism in tumour-bearing exercising rats. Eur J Cancer. 1995;31:97–103.

    Article  Google Scholar 

  9. Sayer AA, Syddall HE, Dennison EM, Martin HJ, Phillips DI, Cooper C, et al. Grip strength and the metabolic syndrome: findings from the Hertfordshire Cohort Study. QJM. 2007;100:707–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lee SW, Park GH, Lee SW, Song JH, Hong KC, Kim MJ. Insulin resistance and muscle wasting in non-diabetic end-stage renal disease patients. Nephrol Dial Transplant. 2007;22:2554–62.

    Article  CAS  PubMed  Google Scholar 

  11. Morley JE. Diabetes and aging: epidemiologic overview. Clin Geriatr Med. 2008;24:395–405.

    Article  PubMed  Google Scholar 

  12. Asp ML, Tian M, Wendel AA, Belury MA. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int J Cancer. 2010;126:756–63.

    Article  CAS  PubMed  Google Scholar 

  13. Chen SZ, Qiu ZG. Combined treatment with GH, insulin, and indomethacin alleviates cancer cachexia in a mouse model. J Endocrinol. 2011;208:131–6.

    Article  CAS  PubMed  Google Scholar 

  14. Lundholm K, Körner U, Gunnebo L, Sixt-Ammilon P, Fouladiun M, Daneryd P, et al. Insulin treatment in cancer cachexia: effects on survival, metabolism, and physical functioning. Clin Cancer Res. 2007;13:2699–706.

    Article  CAS  PubMed  Google Scholar 

  15. Asp ML, Tian M, Kliewer KL, Belury MA. Rosiglitazone delayed weight loss and anorexia while attenuating adipose depletion in mice with cancer cachexia. Cancer Biol Ther. 2011;12:957–65.

    Article  CAS  PubMed  Google Scholar 

  16. Nam JS, Nam JY, Yoo JS, Cho M, Park JS, Ahn CW, et al. The effect of rosiglitazone on insulin sensitivity and mid-thigh low-density muscle in patients with type 2 diabetes. Diabet Med. 2010;27:30–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sanders PM, Russell ST, Tisdale MJ. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br J Cancer. 2005;93:425–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Brink M, Wellen J, Delafontaine P. Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest. 1996;97:2509–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, et al. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2006;281:35137–46.

    Article  CAS  PubMed  Google Scholar 

  20. Anker SD, Negassa A, Coats AJ, Afzal R, Poole-Wilson PA, Cohn JN, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361:1077–83.

    Article  CAS  PubMed  Google Scholar 

  21. Adigun AO, Ajayi AA. The effects of enalapril-digoxin-diuretic combination therapy on nutritional and anthropometric indices in chronic congestive heart failure: preliminary findings in cardiac cachexia. Eur J Heart Fail. 2001;3:359–63.

    Article  CAS  PubMed  Google Scholar 

  22. Onder G, Penninx BW, Balkrishnan R, Fried LP, Chaves PH, Williamson J, et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet. 2002;359:926–30.

    Article  CAS  PubMed  Google Scholar 

  23. Schanze N, Springer J. Evidence for an effect of ACE inhibitors on cancer cachexia. J Cachex Sarcopenia Muscle. 2012;3:139.

    Article  Google Scholar 

  24. Neo JH, Malcontenti-Wilson C, Muralidharan V, Christophi C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J Gastroenterol Hepatol. 2007;22:577–84.

    Article  CAS  PubMed  Google Scholar 

  25. Mantovani G, Madeddu C. Cancer cachexia: medical management. Support Care Cancer. 2010;18:1–9.

    Article  PubMed  Google Scholar 

  26. Zhou W, Jiang ZW, Jiang J, Li JS. The establishment of one kind of animal model of cancer cachexia. Chin J Exp Surg. 2004;21:490–1 (in Chinese).

    Google Scholar 

  27. Nai YJ, Jiang ZW, Wang ZM, Li JS. Effect of nuclear factor-κB inhibitor on cancer cachexia. J Parenter Enteral Nutr. 2007;14:270–4 (in Chinese).

    Google Scholar 

  28. Remmele W, Schicketanz KH. Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer. Computer-assisted image analysis (QIC score) vs. subjective grading (IRS). Pathol Res Pract. 1993;189:862–6.

    Article  CAS  PubMed  Google Scholar 

  29. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89:2637–45.

    Article  CAS  PubMed  Google Scholar 

  30. MacDonald N, Easson AM, Mazurak VC, Dunn GP, Baracos VE. Understanding and managing cancer cachexia. J Am Coll Surg. 2003;197:143–61.

    Article  PubMed  Google Scholar 

  31. von Haehling S, Genth-Zotz S, Anker SD, Volk HD. Cachexia: a therapeutic approach beyond cytokine antagonism. Int J Cardiol. 2002;85:173–83.

    Article  Google Scholar 

  32. O’Gorman P, McMillan DC, McArdle CS. Prognostic factors in advanced gastrointestinal cancer patients with weight loss. Nutr Cancer. 2000;37:36–40.

    Article  PubMed  Google Scholar 

  33. MacIntosh CG, Morley JE, Wishart J, Morris H, Jansen JB, Horowitz M, et al. Effect of exogenous cholecystokinin (CCK)-8 on food intake and plasma CCK, leptin, and insulin concentrations in older and young adults: evidence for increased CCK activity as a cause of the anorexia of aging. J Clin Endocrinol Metab. 2001;86:5830–7.

    CAS  PubMed  Google Scholar 

  34. Steinborn W, Ander SD. Cardiac cachexia: pathophysiology and clinical implications. Basic Appl Myol. 2003;13:191–201.

    Google Scholar 

  35. Bosaeus I, Daneryd P, Svanberg E, Lundholm K. Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer. 2001;93:380–3.

    Article  CAS  PubMed  Google Scholar 

  36. Aulino P, Berardi E, Cardillo VM, Rizzuto E, Perniconi B, Ramina C, et al. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC Cancer. 2010;10:363.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Yoshida T, Semprun-Prieto L, Sukhanov S, Delafontaine P. IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression. Am J Physiol Heart Circ Physiol. 2010;298:H1565–70.

    Article  CAS  PubMed  Google Scholar 

  38. Tisdale MJ. Cancer cachexia. Curr Opin Gastroenterol. 2010;26:146–51.

    Article  PubMed  Google Scholar 

  39. Carson JA, Baltgalvis KA. Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc Sport Sci Rev. 2010;38:168–76.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell. 1996;87:13–20.

    Article  CAS  PubMed  Google Scholar 

  41. Cai D, Frantz JD, Tawa Jr NE, Melendez PA, Oh BC, Lidov HG, et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 2004;119:285–98.

    Article  CAS  PubMed  Google Scholar 

  42. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Gell Physiol. 2004;287:C834–43.

    Article  CAS  Google Scholar 

  43. Coletti D, Belli L, Adamo S. Cachexia: novel perspectives for an old syndrome. Basic Appl Myol. 2006;16:131–9.

    Google Scholar 

  44. Remels AH, Langen RC, Gosker HR, Russell AP, Spaapen F, Voncken JW, et al. PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab. 2009;297(1):E174–83.

    Article  CAS  PubMed  Google Scholar 

  45. Bai YP, Liu YH, Chen J, Song T, You Y, Tang ZY, et al. Rosiglitazone attenuates NF-kappaB-dependent ICAM-1 and TNF-alpha production caused by homocysteine via inhibiting ERK1/2/p38MAPK activation. Biochem Biophys Res Commun. 2007;360:20–6.

    Article  CAS  PubMed  Google Scholar 

  46. Choi KC, Ryu OH, Lee KW, Kim HY, Seo JA, Kim SG, et al. Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochem Biophys Res Commun. 2005;336:747–53.

    Article  CAS  PubMed  Google Scholar 

  47. Harte A, McTernan P, Chetty R, Coppack S, Katz J, Smith S, et al. Insulin-mediated upregulation of the renin angiotensin system in human subcutaneous adipocytes is reduced by rosiglitazone. Circulation. 2005;111:1954–61.

    Article  CAS  PubMed  Google Scholar 

  48. Fernandes LC, Machado UF, Nogueira CR, Carpinelli AR, Curi R. Insulin secretion in Walker 256 tumor cachexia. Am J Physiol. 1990;258(6 Pt 1):E1033–6.

    CAS  PubMed  Google Scholar 

  49. Crown AL, Cottle K, Lightman SL, Falk S, Mohamed-Ali V, Armstrong L, et al. What is the role of the insulin-like growth factor system in the pathophysiology of cancer cachexia, and how is it regulated? Clin Endocrinol (Oxf). 2002;56:723–33.

    Article  CAS  Google Scholar 

  50. McCall JL, Tuckey JA, Parry BR. Serum tumor necrosis factor alpha and insulin resistance in gastrointestinal cancer. Br J Surg. 1992;79:1361–3.

    Article  CAS  PubMed  Google Scholar 

  51. Lang CH, Dobrescu C, Bagby GJ. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 1992;130:43–52.

    CAS  PubMed  Google Scholar 

  52. Zander T, Kraus JA, Grommes C, Schlegel U, Feinstein D, Klockgether T, et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem. 2002;81:1052–60.

    Article  CAS  PubMed  Google Scholar 

  53. Goetze S, Bungenstock A, Czupalla C, Eilers F, Stawowy P, Kintscher U, et al. Leptin induces endothelial cell migration through Akt, which is inhibited by PPAR gamma-ligands. Hypertension. 2002;40:748–54.

    Article  CAS  PubMed  Google Scholar 

  54. Iwata M, Haruta T, Usui I, Takata Y, Takano A, Uno T, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator–activated receptor -gamma. Diabetes. 2001;50:1083–92.

    Article  CAS  PubMed  Google Scholar 

  55. Martinez L, Berenguer M, Bruce MC, Marchand-Brustel Y, Govers R. Rosiglitazone increases cell surface GLUT4 levels in 3T3-L1 adipocytes through an enhancement of endosomal recycling. Biochem Pharmacol. 2010;79:1300–9.

    Article  CAS  PubMed  Google Scholar 

  56. Vijay SK, Mishra M, Kumar H, Tripathi K. Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol. 2009;46:27–33.

    Article  CAS  PubMed  Google Scholar 

  57. Cabassi A, Tedeschi S. Zinc-α2-glycoprotein as a marker of fat catabolism in humans. Curr Opin Clin Nutr Metab Care. 2013;16:267–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant (no. JS06045) from the Professor Academic Development Fund of Fujian Medical University.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Zeng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SZ., Xiao, JD. Rosiglitazone and imidapril alone or in combination alleviate muscle and adipose depletion in a murine cancer cachexia model. Tumor Biol. 35, 323–332 (2014). https://doi.org/10.1007/s13277-013-1043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1043-1

Keywords

Navigation