Tumor Biology

, Volume 35, Issue 1, pp 265–268 | Cite as

A functional polymorphism in IL-1A gene is associated with a reduced risk of gastric cancer

  • Xiao-Feng Zeng
  • Juan Li
  • Sheng-Bin Li
Research Article


Accumulating evidence has identified that polymorphism residing in the microRNA (miRNA) binding site of target genes can affect the strength of miRNA binding and influence individual susceptibility to cancer. Recently, an insertion/deletion polymorphism (rs3783553 ttca/-) at miRNA-122 binding site in the interleukin-1A 3′ untranslated region has been demonstrated to be functional. We aimed to investigate the association between the rs3783553 polymorphism and the risk of gastric cancer (GC). We genotyped the rs3783553 polymorphism in 207 GC patients and 381 healthy controls by using a polymerase chain reaction method. We found that the ins/ins (ttca/ttca) genotype of the rs3783553 polymorphism was associated with a significantly decreased risk of GC (P = 0.02, odds ratio = 0.48, 95 % confidence interval 0.26–0.90). This finding suggests that the rs3783553 polymorphism may be a protective factor for the development of GC.


MiRNA-122 Polymorphism Interleukin-1A Gastric cancer 


Conflicts of interest



  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.PubMedCrossRefGoogle Scholar
  2. 2.
    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Crew KD, Neugut AI. Epidemiology of upper gastrointestinal malignancies. Semin Oncol. 2004;31:450–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 2007;35:4535–41.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81:405–13.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Mishra PJ, Humeniuk R, Longo-Sorbello GS, Banerjee D, Bertino JR. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA. 2007;104:13513–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Gao Y, He Y, Ding J, Wu K, Hu B, Liu Y, et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3′ untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis. 2009;30:2064–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2008;105:7269–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68:8535–40.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Landi D, Moreno V, Guino E, Vodicka P, Pardini B, Naccarati A, et al. Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutat Res. 2011;717:109–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008;29:579–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Yang ZH, Dai Q, Zhong L, Zhang X, Guo QX, Li SN. Association of IL-1 polymorphisms and IL-1 serum levels with susceptibility to nasopharyngeal carcinoma. Mol Carcinog. 2011;50:208–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Deng H, Guo Y, Song H, Xiao B, Sun W, Liu Z, et al. MicroRNA-195 and microRNA-378 mediate tumor growth suppression by epigenetical regulation in gastric cancer. Gene. 2013;518:351–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L, et al. MicroRNA profiling of human gastric cancer. Mol Med Rep. 2009;2:963–70.PubMedGoogle Scholar
  17. 17.
    Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W, et al. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012;316:196–203.PubMedCrossRefGoogle Scholar
  19. 19.
    Apte RN, Voronov E. Is interleukin-1 a good or bad ‘guy’ in tumor immunobiology and immunotherapy? Immunol Rev. 2008;222:222–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Pantschenko AG, Pushkar I, Anderson KH, Wang Y, Miller LJ, Kurtzman SH, et al. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol. 2003;23:269–84.PubMedGoogle Scholar
  21. 21.
    Elaraj DM, Weinreich DM, Varghese S, Puhlmann M, Hewitt SM, Carroll NM, et al. The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res. 2006;12:1088–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Sakamoto K, Hikiba Y, Nakagawa H, Hayakawa Y, Yanai A, Akanuma M, et al. Inhibitor of kappaB kinase beta regulates gastric carcinogenesis via interleukin-1alpha expression. Gastroenterology. 2010;139(226–238):e226.CrossRefGoogle Scholar
  23. 23.
    Nicklin MJ, Weith A, Duff GW. A physical map of the region encompassing the human interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist genes. Genomics. 1994;19:382–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Uefuji K, Ichikura T, Mochizuki H. Increased expression of interleukin-1alpha and cyclooxygenase-2 in human gastric cancer: a possible role in tumor progression. Anticancer Res. 2005;25:3225–30.PubMedGoogle Scholar
  25. 25.
    Kemik O, Kemik AS, Begenik H, Erdur FM, Emre H, Sumer A, et al. The relationship among acute-phase response proteins, cytokines, and hormones in various gastrointestinal cancer types patients with cachectic. Hum Exp Toxicol. 2012;31:117–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Ma J, Sawai H, Matsuo Y, Ochi N, Yasuda A, Takahashi H, et al. Interleukin-1alpha enhances angiogenesis and is associated with liver metastatic potential in human gastric cancer cell lines. J Surg Res. 2008;148:197–204.PubMedCrossRefGoogle Scholar
  27. 27.
    Tomimatsu S, Ichikura T, Mochizuki H. Significant correlation between expression of interleukin-1alpha and liver metastasis in gastric carcinoma. Cancer. 2001;91:1272–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Furuya Y, Ichikura T, Mochizuki H. Interleukin-1alpha concentration in tumors as a risk factor for liver metastasis in gastric cancer. Surg Today. 1999;29:288–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Hata Y, Nakaoka H, Yoshihara K, Adachi S, Haino K, Yamaguchi M, et al. A nonsynonymous variant of IL1A is associated with endometriosis in Japanese population. J Hum Genet. 2013. doi: 10.1038/jhg.2013.32.Google Scholar
  30. 30.
    Lu D, Chen L, Shi X, Zhang X, Ling X, Chen X, et al. A functional polymorphism in interleukin-1alpha (IL1A) gene is associated with risk of alopecia areata in Chinese populations. Gene. 2013;521:282–6.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  1. 1.School of Forensic MedicineXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Forensic MedicineKunming Medical UniversityKunmingChina
  3. 3.Center for Disease Control and Prevention of Yunnan ProvinceKunmingChina

Personalised recommendations