Tumor Biology

, Volume 35, Issue 1, pp 219–225 | Cite as

A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report

  • Seyed-Shahaboddin Hasani
  • Mohammad Hashemi
  • Ebrahim Eskandari-Nasab
  • Majid Naderi
  • Mohsen Omrani
  • Maryam Sheybani-Nasab
Research Article


Growing evidence showed that microRNAs (miRs) are involved in normal hematopoiesis and the pathogenesis of several hematological malignancies. Genetic variations or mutations occurring in the miR gene region may affect the property of miRs through altering miR expression and/or maturation. The aim of the present study was to evaluate the possible relationship between two miRs polymorphisms, hsa-miR-146a (rs2910164 G>C) and hsa-miR-499 (rs3746444 T>C), and the susceptibility to childhood acute lymphoblastic leukemia (ALL) in a sample of Iranian population. This case–control study was performed on 75 children diagnosed with ALL and 115 age- and sex-matched children with no history of cancer of any type (as the control group). Tetra-primer amplification refractory mutation system-polymerase chain reaction was applied for genotyping the variants. We found that the rs2910164 G>C variant of hsa-miR-146a significantly increased the risk of ALL (CC vs. GG, OR = 4.24, 95 %CI = 1.52–11.87, P = 0.006; GC vs. GG, OR = 3.55, 95 % CI = 1.41–8.93, P = 0.007; C vs. T, OR = 1.73, 95 % CI = 1.13–2.67, P = 0.012). With respect to hsa-miR-499 rs3746444 T/C, no significant difference in allele and genotype frequencies of the rs3746444 variant between ALL patients and controls was observed. Our results for the first time demonstrated that the miR-146a rs2910164, but not miR-499 rs3746444 variant, was associated with increased risk for developing pediatrics ALL in an Iranian population.


CHILDHOOD acute lymphoblastic leukemia miR-146a miR-499 Polymorphism 



This paper was based on M.Sc. thesis of SH, and the deputy for Research at Zahedan University of Medical Sciences provided the fund.

Conflicts of interest



  1. 1.
    Canalle R, Burim RV, Tone LG, Takahashi CS. Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen. 2004;43:100–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 2011;117:1121–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Hua Z, Chun W, Fang-Yuan C. MicroRNA-146a and hematopoietic disorders. Int J Hematol. 2011;94:224–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Starczynowski DT, Morin R, McPherson A, Lam J, Chari R, Wegrzyn J, et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood. 2011;117:595–607.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang J, Wang Q, Liu H, Shao N, Tan B, Zhang G, et al. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies. Mutagenesis. 2012;27:779–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Xu B, Feng NH, Li PC, Tao J, Wu D, Zhang ZD, et al. A functional polymorphism in pre-miR-146a gene is associated with prostate cancer risk and mature mir-146a expression in vivo. Prostate. 2010;70:467–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Hu Z, Liang J, Wang Z, Tian T, Zhou X, Chen J, et al. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat. 2009;30:79–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Ahn DH, Rah H, Choi YK, Jeon YJ, Min KT, Kwack K, et al. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. Mol Carcinog. 2012. doi: 10.1002/mc.21962.Google Scholar
  9. 9.
    Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008;29:1963–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhi H, Wang L, Ma G, Ye X, Yu X, Zhu Y, et al. Polymorphisms of miRNAs genes are associated with the risk and prognosis of coronary artery disease. Clin Res Cardiol. 2011;101:289–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Xiang Y, Fan S, Cao J, Huang S, Zhang LP. Association of the microRNA-499 variants with susceptibility to hepatocellular carcinoma in a Chinese population. Mol Biol Rep. 2012;39(6):7019–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu Z, Li G, Wei S, Niu J, El-Naggar AK, Sturgis EM, et al. Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. Cancer. 2010;116:4753–60.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Catucci I, Yang R, Verderio P, Pizzamiglio S, Heesen L, Hemminki K, et al. Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. Hum Mutat. 2010;31:E1052–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Xiang Y, Fan S, Cao J, Huang S, Zhang LP. Association of the microRNA-499 variants with susceptibility to hepatocellular carcinoma in a Chinese population. Mol Biol Rep. 2012;39:7019–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Yang L, Li Y, Cheng M, Huang D, Zheng J, Liu B, et al. A functional polymorphism at microRNA-629-binding site in the 3′-untranslated region of NBS1 gene confers an increased risk of lung cancer in Southern and Eastern Chinese population. Carcinogenesis. 2012;33:338–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Mittal RD, Gangwar R, George GP, Mittal T, Kapoor R. Investigative role of pre-microRNAs in bladder cancer patients: a case–control study in North India. DNA Cell Biol. 2011;30:401–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang Y, Yang B, Ren X. Hsa-miR-499 polymorphism (rs3746444) and cancer risk: a meta-analysis of 17 case–control studies. Gene. 2012;509:267–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang L, Qian S, Zhi H, Zhang Y, Wang B, Lu Z. The association between hsa-miR-499 T>C polymorphism and cancer risk: a meta-analysis. Gene. 2012;508:9–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, Bardestani GR, Kordi-Tamandani DM, et al. Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in Southeast Iran. Genet Mol Res. 2010;9:333–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Hashemi M, Eskandari-Nasab E, Zakeri Z, Atabaki M, Bahari G, Jahantigh M, et al. Association of pre-miRNA-146a rs2910164 and pre-mIRNA-499 rs3746444 polymorphisms and susceptibility to rheumatoid arthritis. Mol Med Report. 2013;7:287–91.Google Scholar
  21. 21.
    Landi D, Gemignani F, Barale R, Landi S. A catalog of polymorphisms falling in microRNA-binding regions of cancer genes. DNA Cell Biol. 2008;27:35–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Li L, Chen XP, Li YJ. MicroRNA-146a and human disease. Scand J Immunol. 2010;71:227–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Li J, Wan Y, Guo Q, Zou L, Zhang J, Fang Y, et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2010;12:R81.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lian H, Wang L, Zhang J. Increased risk of breast cancer associated with CC genotype of has-miR-146a rs2910164 polymorphism in Europeans. PLoS One. 2012;7:e31615.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Okubo M, Tahara T, Shibata T, Yamashita H, Nakamura M, Yoshioka D, et al. Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter. 2010;15:524–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Xu T, Zhu Y, Wei QK, Yuan Y, Zhou F, Ge YY, et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis. 2008;29:2126–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Guo H, Wang K, Xiong G, Hu H, Wang D, Xu X, et al. A functional varient in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam Cancer. 2010;9:599–603.PubMedCrossRefGoogle Scholar
  28. 28.
    Pastrello C, Polesel J, Della Puppa L, Viel A, Maestro R. Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis. 2010;31:2124–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Gao LB, Bai P, Pan XM, Jia J, Li LJ, Liang WB, et al. The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;125:571–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Min KT, Kim JW, Jeon YJ, Jang MJ, Chong SY, Oh D, Kim NK. Association of the miR-146aC>G, 149C>T, 196a2C>T, and 499A>G polymorphisms with colorectal cancer in the Korean population. Mol Carcinog 2011.Google Scholar
  31. 31.
    Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev. 2009;18:1183–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Xu W, Xu J, Liu S, Chen B, Wang X, Li Y, et al. Effects of common polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: a meta-analysis. PLoS One. 2011;6:e20471.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Wang J, Bi J, Liu X, Li K, Di J, Wang B. Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 case–control studies. Mol Biol Rep. 2011;39(4):4571–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Qiu LX, He J, Wang MY, Zhang RX, Shi TY, Zhu ML, et al. The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine. 2011;56:695–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA. miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun Rev. 2011;11(9):636–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, et al. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci U S A. 2009;106:1502–5.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lung RW, Wang X, Tong JH, Chau SL, Lau KM, Cheng SH, et al. A single nucleotide polymorphism in microRNA-146a is associated with the risk for nasopharyngeal carcinoma. Mol Carcinog. 2012. doi: 10.1002/mc.21937.Google Scholar
  38. 38.
    Debernardi S, Dixon-McIver A. MicroRNA detection in bone marrow cells by LNA-FISH. Methods Mol Biol. 2010;667:33–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Jazdzewski K, Boguslawska J, Jendrzejewski J, Liyanarachchi S, Pachucki J, Wardyn KA, et al. Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab. 2011;96:E546–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008;3:e2557.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Elsarraj HS, Stecklein SR, Valdez K, Behbod F. Emerging functions of microRNA-146a/b in development and breast cancer: microRNA-146a/b in development and breast cancer. J Mammary Gland Biol Neoplasia. 2012;17:79–87.PubMedCrossRefGoogle Scholar
  42. 42.
    Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS, et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3:279–90.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes. 2010;59:978–86.PubMedCrossRefGoogle Scholar
  44. 44.
    Lionetti M, Musto P, Di Martino MT, Fabris S, Agnelli L, Todoerti K, et al. Biological and clinical relevance of miRNA expression signatures in primary plasma cell leukemia. Clin Cancer Res. 2013;19:3130–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Pang Y, Young CY, Yuan H. MicroRNAS and prostate cancer. Acta Biochim Biophys Sin (Shanghai). 2010;42:363–9.CrossRefGoogle Scholar
  46. 46.
    Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17:4277–84.PubMedCrossRefGoogle Scholar
  47. 47.
    Mei J, Bachoo R, Zhang CL. MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol. 2011;31:3584–92.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91:827–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008;10:R101.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189–201.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev. 2010;29:613–39.PubMedCrossRefGoogle Scholar
  52. 52.
    Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, et al. miR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012;209:1655–70.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Spierings DC, McGoldrick D, Hamilton-Easton AM, Neale G, Murchison EP, Hannon GJ, et al. Ordered progression of stage-specific miRNA profiles in the mouse B2 B-cell lineage. Blood. 2011;117:5340–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang F, Sun G, Zou Y, Li Y, Hao L, Pan F. Association of microRNA-499 rs3746444 polymorphism with cancer risk: evidence from 7188 cases and 8548 controls. PLoS One. 2012;7:e45042.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Seyed-Shahaboddin Hasani
    • 1
    • 2
  • Mohammad Hashemi
    • 1
    • 2
  • Ebrahim Eskandari-Nasab
    • 2
  • Majid Naderi
    • 3
  • Mohsen Omrani
    • 1
  • Maryam Sheybani-Nasab
    • 2
  1. 1.Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
  2. 2.Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
  3. 3.Department of Pediatrics, School of MedicineZahedan University of Medical SciencesZahedanIran

Personalised recommendations