Tumor Biology

, Volume 35, Issue 1, pp 195–204 | Cite as

Glucose-regulated protein 78 mediates hormone-independent prostate cancer progression and metastasis through maspin and COX-2 expression

  • Chun-Te Wu
  • Wen-Ching Wang
  • Miao-Fen Chen
  • Hou-Yu Su
  • Wei-Yu Chen
  • Chih-Hsiung Wu
  • Yu-Jia Chang
  • Hui-Hsiung Liu
Research Article


Glucose-regulated protein 78 (GRP78) plays an essential role in embryonic development and in the progression and therapeutic resistance of many cancers. However, little is known about the function of GRP78 in hormone-independent prostate cancer. Here, we found that the expression levels of GRP78 were higher in PC-3 cells than in DU-145 cells. When the expression of GRP78 was silenced using a GRP78-specific small interfering RNA in PC-3 cells, the growth rate and adhesive ability were reduced. Cell migration was dramatically decreased in GRP78-depleted cells. Dissection of the involved signal pathways revealed that maspin expression was upregulated after silencing GRP78 expression. The upregulation of maspin and downregulation of COX-2 may cause the decrease in cell proliferation and migration observed after silencing GRP78 expression. Silencing GRP78 expression may suppress the proliferation, adhesion, and migration of prostate cancer cells via maspin and COX-2 regulation.


GRP78 Prostate cancer Migration Maspin COX-2 



Glucose-regulated protein 78


Small interfering RNA


Hormone refractory prostate cancer


Endoplasmic reticulum



This study is supported by grants from Chang Gung Memorial Hospital (CMRPG290042) and the Chi-Mei Medical Center/Taipei Medical University (100CM-TMU-14-1).

Conflicts of interest



  1. 1.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA: Cancer J Clin. 2005;55:10–30.Google Scholar
  2. 2.
    Jemal A, Clegg LX, Ward E, Ries LA, Wu X, Jamison PM, et al. Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer. 2004;101:3–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2013;32:805–18.PubMedCrossRefGoogle Scholar
  4. 4.
    Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci. 2012;19:102.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee AS. Grp78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67:3496–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee AS. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci. 2001;26:504–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Hendershot LM. The ER function BiP is a master regulator of ER function. Mt Sinai J Med New York. 2004;71:289–97.Google Scholar
  8. 8.
    Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett. 2007;581:3641–51.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Shen J, Hughes C, Chao C, Cai J, Bartels C, Gessner T, et al. Coinduction of glucose-regulated proteins and doxorubicin resistance in Chinese hamster cells. Proc Natl Acad Sci U S A. 1987;84:3278–82.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Koomagi R, Mattern J, Volm M. Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins p170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Res. 1999;19:4333–6.PubMedGoogle Scholar
  11. 11.
    Tomida A, Tsuruo T. Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anti-Cancer Drug Des. 1999;14:169–77.Google Scholar
  12. 12.
    Li N, Zoubeidi A, Beraldi E, Gleave ME. Grp78 regulates clusterin stability, retrotranslocation and mitochondrial localization under ER stress in prostate cancer. Oncogene. 2013;32:1933–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem. 2003;278:20915–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 2002;514:122–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Miyake H, Hara I, Arakawa S, Kamidono S. Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells. J Cell Biochem. 2000;77:396–408.PubMedCrossRefGoogle Scholar
  16. 16.
    Jamora C, Dennert G, Lee AS. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci U S A. 1996;93:7690–4.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dong D, Ko B, Baumeister P, Swenson S, Costa F, Markland F, et al. Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res. 2005;65:5785–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, et al. Activation of the ATF6, XBP1 AND GRP78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol. 2003;38:605–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Gazit G, Lu J, Lee AS. De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Res Treat. 1999;54:135–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Mintz PJ, Kim J, Do KA, Wang X, Zinner RG, Cristofanilli M, et al. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol. 2003;21:57–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D, et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol. 2007;38:1547–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Fleshner N, Fair WR, Huryk R, Heston WD. Vitamin e inhibits the high-fat diet promoted growth of established human prostate LNCaP tumors in nude mice. J Urol. 1999;161:1651–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Tan SS, Ahmad I, Bennett HL, Singh L, Nixon C, Seywright M, et al. GRP78 up-regulation is associated with androgen receptor status, hsp70–hsp90 client proteins and castrate-resistant prostate cancer. J Pathol. 2011;223:81–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Teoh SS, Whisstock JC, Bird PI. Maspin (SERPINB5) is an obligate intracellular serpin. J Biol Chem. 2010;285:10862–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Berardi R, Morgese F, Onofri A, Mazzanti P, Pistelli M, Ballatore Z, et al. Role of maspin in cancer. Clin Transl Med. 2013;2:8.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Liu Y, Geng Y, Li K, Wang F, Zhou H, Wang W, et al. Comparative proteomic analysis of the function and network mechanisms of maspin in human lung cells. Exp Ther Med. 2012;3:470–4.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Zhang M, Volpert O, Shi YH, Bouck N. Maspin is an angiogenesis inhibitor. Nat Med. 2000;6:196–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Abraham S, Zhang W, Greenberg N, Zhang M. Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol. 2003;169:1157–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Ravenhill L, Wagstaff L, Edwards DR, Ellis V, Bass R. G-helix of maspin mediates effects on cell migration and adhesion. J Biol Chem. 2010;285:36285–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Hall DC, Johnson-Pais TL, Grubbs B, Bernal R, Leach RJ, Padalecki SS. Maspin reduces prostate cancer metastasis to bone. Urol Oncol. 2008;26:652–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Cher ML, Biliran Jr HR, Bhagat S, Meng Y, Che M, Lockett J, et al. Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proc Natl Acad Sci U S A. 2003;100:7847–52.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Li X, Chen D, Yin S, Meng Y, Yang H, Landis-Piwowar KR, et al. Maspin augments proteasome inhibitor-induced apoptosis in prostate cancer cells. J Cell Physiol. 2007;212:298–306.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang SK, Liang PH, Astronomo RD, Hsu TL, Hsieh SL, Burton DR, et al. Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci U S A. 2008;105:3690–5.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, et al. Membrane nanotubes physically connect t cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008;10:211–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Hung CS, Lin SF, Liu HH, Kuo LJ, Li LT, Su HY, Liew PL, Lin FY, Wei PL, Liu DZ, Chang YJ. Survivin-mediated therapeutic efficacy of gemcitabine through glucose-regulated protein 78 in hepatocellular carcinoma. Annals of Surgical Oncology 2012.Google Scholar
  36. 36.
    Chang YJ, Chiu CC, Wu CH, An J, Wu CC, Liu TZ, et al. Glucose-regulated protein 78 (GRP78) silencing enhances cell migration but does not influence cell proliferation in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:1703–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Bailey CM, Khalkhali-Ellis Z, Seftor EA, Hendrix MJ. Biological functions of maspin. J Cell Physiol. 2006;209:617–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Demaria S, Pikarsky E, Karin M, Coussens LM, Chen YC, El-Omar EM, et al. Cancer and inflammation: promise for biologic therapy. J Immunother. 2010;33:335–51.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Gulati R, Mariotto AB, Chen S, Gore JL, Etzioni R. Long-term projections of the harm-benefit trade-off in prostate cancer screening are more favorable than previous short-term estimates. J Clin Epidemiol. 2011;64:1412–7.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Gates TJ, Beelen MJ, Hershey CL. Cancer screening in men. Nurs Clin N Am. 2008;43:283–306.CrossRefGoogle Scholar
  41. 41.
    Massard C, Fizazi K. Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17:3876–83.CrossRefGoogle Scholar
  42. 42.
    Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 2012.Google Scholar
  43. 43.
    Li Z. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. Biochim Biophys Acta. 1826;2012:13–22.Google Scholar
  44. 44.
    Ren Z, Srajer V, Knapp JE, Royer Jr WE. Cooperative macromolecular device revealed by meta-analysis of static and time-resolved structures. Proc Natl Acad Sci U S A. 2012;109:107–12.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Ghosh N, Chaki R, Mandal V, Mandal SC. COX-2 as a target for cancer chemotherapy. Pharmacol Reports: PR. 2010;62:233–44.Google Scholar
  46. 46.
    Lin F, Luo J, Gao W, Wu J, Shao Z, Wang Z, Meng J, Ou Z, Yang G. COX-2 promotes breast cancer cell radioresistance via p38/MAPK-mediated cellular anti-apoptosis and invasiveness. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 2013.Google Scholar
  47. 47.
    Guo YC, Chang CM, Hsu WL, Chiu SJ, Tsai YT, Chou YH, et al. Indomethacin inhibits cancer cell migration via attenuation of cellular calcium mobilization. Molecules. 2013;18:6584–96.PubMedCrossRefGoogle Scholar
  48. 48.
    Chen YF, Chen YT, Chiu WT, Shen MR. Remodeling of calcium signaling in tumor progression. J Biomed Sci. 2013;20:23.PubMedCrossRefGoogle Scholar
  49. 49.
    Yang S, Zhang JJ, Huang XY. Orai1 and stim1 are critical for breast tumor cell migration and metastasis. Cancer cell. 2009;15:124–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang N, Tang Y, Wang F, Zhang H, Xu D, Shen Y, et al. Blockade of store-operated Ca (2+) entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett. 2013;330:163–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Derouiche S, Warnier M, Mariot P, Gosset P, Mauroy B, Bonnal JL, et al. Bisphenol a stimulates human prostate cancer cell migration remodelling of calcium signalling. SpringerPlus. 2013;2:54.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Hou MF, Kuo HC, Li JH, Wang YS, Chang CC, Chen KC, et al. Orai1/CRACM1 overexpression suppresses cell proliferation via attenuation of the store-operated calcium influx-mediated signalling pathway in A549 lung cancer cells. Biochim Biophys Acta. 1810;2011:1278–84.Google Scholar
  53. 53.
    Wang JY, Chen BK, Wang YS, Tsai YT, Chen WC, Chang WC, et al. Involvement of store-operated calcium signaling in EGF-mediated COX-2 gene activation in cancer cells. Cell Signal. 2012;24:162–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Huang WC, Chai CY, Chen WC, Hou MF, Wang YS, Chiu YC, et al. Histamine regulates cyclooxygenase 2 gene activation through Orai1-mediated NFkappaB activation in lung cancer cells. Cell calcium. 2011;50:27–35.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Chun-Te Wu
    • 1
    • 2
  • Wen-Ching Wang
    • 3
  • Miao-Fen Chen
    • 1
    • 4
  • Hou-Yu Su
    • 5
  • Wei-Yu Chen
    • 6
  • Chih-Hsiung Wu
    • 7
    • 8
    • 9
    • 10
  • Yu-Jia Chang
    • 7
    • 8
    • 9
    • 11
    • 12
  • Hui-Hsiung Liu
    • 13
  1. 1.Chang Gung University College of Medicine and Chang Gung Institute of TechnologyTaipeiTaiwan
  2. 2.Department of UrologyChang Gung Memorial Hospital at KeelungKeelungTaiwan
  3. 3.Department of General SurgeryChi-Mei Medical CenterTainanTaiwan
  4. 4.Department of Radiation OncologyChang Gung Memorial HospitalChiayiTaiwan
  5. 5.Department of SurgerySaint Mary’s Hospital Luodong Yilan CountyYilanTaiwan
  6. 6.Department of PathologyWan-Fang Hospital and Taipei Medical UniversityTaipeiTaiwan
  7. 7.Graduate Institute of Clinical MedicineCollege of Medicine Taipei Medical UniversityTaipeiTaiwan
  8. 8.Department of SurgeryTaipei Medical UniversityTaipeiTaiwan
  9. 9.Division of General SurgeryTaipei Medical University and HospitalTaipeiTaiwan
  10. 10.Division of General Surgery, Department of Surgery, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
  11. 11.Cancer Research CenterTaipei Medical University and HospitalTaipeiTaiwan
  12. 12.Center of Excellence for Cancer ResearchTaipei Medical UniversityTaipeiTaiwan
  13. 13.Department of Public Health, School of Public HealthTaipei Medical UniversityTaipeiTaiwan

Personalised recommendations