Advertisement

Tumor Biology

, Volume 35, Issue 1, pp 189–193 | Cite as

Significant association between MTHFR C677T polymorphism and hepatocellular carcinoma risk: a meta-analysis

  • Hongli Sun
  • Bing Han
  • Hongpeng Zhai
  • Xinhua Cheng
  • Kai Ma
Research Article

Abstract

Previous studies investigated the association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and hepatocellular carcinoma risk, but the impact of MTHFR C677T polymorphism on hepatocellular carcinoma was still unclear, owing to the obvious inconsistence from those studies. This study aimed to quantify the strength of the association between MTHFR C677T polymorphism and hepatocellular carcinoma risk by performing a meta-analysis. We searched the PubMed and Wanfang databases for studies on the association between MTHFR C677T polymorphism and hepatocellular carcinoma risk. We estimated the pooled odds ratios (ORs) with their 95 % confidence intervals (95 % CIs) to assess the association. Fifteen studies with 8,625 participants were finally included into the meta-analysis. Meta-analyses of total 15 studies suggested that MTHFR C677T polymorphism was significantly associated with an increased risk of hepatocellular carcinoma under two main genetic models (for TT versus CC, OR = 1.19, 95 % CI 1.03–1.37, P = 0.016; for TT versus CT/CC, OR = 1.14, 95 % CI 1.01–1.28, P = 0.032). Subgroup meta-analyses suggested that MTHFR C677T polymorphism was associated with an increased risk of hepatocellular carcinoma in Asians, but not in Caucasians. Thus, individuals with homozygote genotype TT of MTHFR C677T have obviously increased risk of hepatocellular carcinoma.

Keywords

MTHFR Polymorphism Hepatocellular carcinoma Meta-analysis 

Notes

Conflicts of interest

None

References

  1. 1.
    El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.PubMedCrossRefGoogle Scholar
  2. 2.
    Villanueva A, Minguez B, Forner A, Reig M, Llovet JM. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med. 2010;61:317–28.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Druesne-Pecollo N, Tehard B, Mallet Y, Gerber M, Norat T, Hercberg S, et al. Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol. 2009;10:173–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Bu X, Zhao C. The association between cyclooxygenase-2 1195 G/A polymorphism and hepatocellular carcinoma: evidence from a meta-analysis. Tumour Biol. 2013;34:1479–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Lv L, Wang P, Zhou X, Sun B. Association between the p53 codon 72 Arg/Pro polymorphism and hepatocellular carcinoma risk. Tumour Biol. 2013;34:1451–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang W, Dang S, Li Y, Sun M, Jia X, Wang R, et al. Hogg1 Ser326Cys polymorphism and risk of hepatocellular carcinoma among East Asians: a meta-analysis. PLoS One. 2013;8:e60178.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001;22:195–201.PubMedCrossRefGoogle Scholar
  8. 8.
    Saffroy R, Pham P, Chiappini F, Gross-Goupil M, Castera L, Azoulay D, et al. The MTHFR 677C>T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis. Carcinogenesis. 2004;25:1443–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Samonakis DN, Koutroubakis IE, Sfiridaki A, Malliaraki N, Antoniou P, Romanos J, et al. Hypercoagulable states in patients with hepatocellular carcinoma. Dig Dis Sci. 2004;49:854–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Ventura P, Rosa MC, Abbati G, Marchini S, Grandone E, Vergura P, et al. Hyperhomocysteinaemia in chronic liver diseases: role of disease stage, vitamin status and methylenetetrahydrofolate reductase genetics. Liver Int. 2005;25:49–56.PubMedCrossRefGoogle Scholar
  11. 11.
    Mu LN, Cao W, Zhang ZF, Cai L, Jiang QW, You NC, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and the risk of primary hepatocellular carcinoma (HCC) in a Chinese population. Cancer Causes Control. 2007;18:665–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Yuan JM, Lu SC, Van Den Berg D, Govindarajan S, Zhang ZQ, Mato JM, et al. Genetic polymorphisms in the methylenetetrahydrofolate reductase and thymidylate synthase genes and risk of hepatocellular carcinoma. Hepatology. 2007;46:749–58.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kwak SY, Kim UK, Cho HJ, Lee HK, Kim HJ, Kim NK, et al. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population. Anticancer Res. 2008;28:2807–11.PubMedGoogle Scholar
  14. 14.
    Yu MC, Yuan JM, Lu SC. Alcohol, cofactors and the genetics of hepatocellular carcinoma. J Gastroenterol Hepatol. 2008;23 Suppl 1:S92–7.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Fabris C, Toniutto P, Falleti E, Fontanini E, Cussigh A, Bitetto D, et al. MTHFR C677T polymorphism and risk of HCC in patients with liver cirrhosis: role of male gender and alcohol consumption. Alcohol Clin Exp Res. 2009;33:102–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Cui LH, Song Y, Si H, Shen F, Shin MH, Kim HN, et al. Folate metabolism-related gene polymorphisms and susceptibility to primary liver cancer in North China. Med Oncol. 2012;29:1837–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMedGoogle Scholar
  18. 18.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.PubMedCrossRefGoogle Scholar
  19. 19.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316:469.PubMedCrossRefGoogle Scholar
  21. 21.
    Egger M, Smith DG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhu ZZ, Cong WM, Liu SF, Xian ZH, Wu WQ. [A study on the association of MTHFR C677T polymorphism with genetic susceptibility to hepatocellular carcinoma]. Zhonghua Gan Zang Bing Za Zhi. 2006;14:196–8.PubMedGoogle Scholar
  23. 23.
    Yang H, He F. Genetic association between candidate genes polymorphisms and susceptibility to chronic hepatitis B, hepatocellular carcinoma and nasopharyngeal carcinoma in Chinese population. Wanfang Doctoral Diss. 2007;2007:2007.Google Scholar
  24. 24.
    An Y, Jin L, Chen J. Association study on polymorphisms of one-carbon pathway with susceptibility of hepatocellular carcinoma. Wanfang Doctoral Diss. 2008;2008:2008.Google Scholar
  25. 25.
    D’Amico M, Pasta L, Sammarco P. MTHFR C677TT, PAI1 4G-4G, V Leiden Q506, and prothrombin G20210A in hepatocellular carcinoma with and without portal vein thrombosis. J Thromb Thrombolysis. 2009;28:70–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu JJ, Gao Y, Du Z. Relationship between the MTHFR C677T polymorphism and the outcome of hepatitis B virus infection. World J Gastroenterol. 2010;18:1555–62.Google Scholar
  27. 27.
    Couvert P, Carrie A, Vaysse J, Sutton A, Barget N, Trinchet JC, et al. Insulin-like growth factor 2 gene methylation in peripheral blood mononuclear cells of patients with hepatitis C related cirrhosis or hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2012;36:345–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Goyette P, Pai A, Milos R, Frosst P, Tran P, Chen Z, et al. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome. 1998;9:652–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Kang SS, Zhou J, Wong P, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet. 1988;43:414.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Zacho J, Yazdanyar S, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. Hyperhomocysteinemia, methylenetetrahydrofolate reductase c.677C>T polymorphism and risk of cancer: cross-sectional and prospective studies and meta-analyses of 75,000 cases and 93,000 controls. Int J Cancer. 2011;128:644–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Teng Z, Wang L, Cai S, Yu P, Wang J, Gong J, et al. The 677C>T (rs1801133) polymorphism in the MTHFR gene contributes to colorectal cancer risk: a meta-analysis based on 71 research studies. PLoS One. 2013;8:e55332.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Zhong S, Yang JH, Liu K, Jiao BH, Chang ZJ. Quantitative assessment of the association between MTHFR C677T polymorphism and colorectal cancer risk in East Asians. Tumour Biol. 2012;33:2041–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Qin X, Peng Q, Chen Z, Deng Y, Huang S, Xu J, et al. The association between MTHFR gene polymorphisms and hepatocellular carcinoma risk: a meta-analysis. PLoS One. 2013;8:e56070.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Wang B, Huang G, Wang D, Li A, Xu Z, Dong R, et al. Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis. J Hepatol. 2010;53:508–18.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Hongli Sun
    • 1
  • Bing Han
    • 1
  • Hongpeng Zhai
    • 2
  • Xinhua Cheng
    • 1
  • Kai Ma
    • 1
  1. 1.Department of Biliary and Vascular Surgery, Affiliated Shengjing HospitalChina Medical UniversityShenyangChina
  2. 2.Department of General SurgeryFengtian Hospital of Shenyang Medical CollegeShenyangChina

Personalised recommendations