Tumor Biology

, Volume 35, Issue 1, pp 81–88 | Cite as

Identification of genes and candidate agents associated with pancreatic cancer

  • Bao-sheng Wang
  • Zhen Liu
  • Shao-long Sun
  • Yi Zhao
Research Article


Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. A major challenge in current cancer research is biological interpretation of complexity of cancer somatic mutation profiles. It has been suggested that several molecular alterations may play important roles in pancreatic carcinogenesis. In this study, by using the GSE28735 affymetrix microarray data accessible from Gene Expression Omnibus (GEO) database, we identified differentially expressed genes (DEGs) between paired pancreatic cancer tissues and adjacent nontumor tissues, followed the protein–protein interaction of the DEGs. Our study identified thousands of DEGs involved in regulation of cell cycle and apoptosis in progression of pancreatic cancer. Sp1 was predicted to be the major regulator by transcription factors analysis. From the protein–protein interaction networks, we found that Tk1 might play an important role in the progression of pancreatic cancer. Finally, we predicted candidate agents, including tomatidine and nialamide, which may be used as drugs to treat pancreatic cancer. In conclusion, our data provide a comprehensive bioinformatics analysis of genes and pathways which may be involved in the progression of pancreatic cancer.


Pancreatic cancer Differentially expressed genes Connectivity map Drug discovery 


Conflict of interest



  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300. doi: 10.3322/caac.20073.PubMedCrossRefGoogle Scholar
  2. 2.
    Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363(9414):1049–57. doi: 10.1016/S0140-6736(04)15841-8S0140-6736(04)15841-8.PubMedCrossRefGoogle Scholar
  3. 3.
    Jimeno A, Hidalgo M. Molecular biomarkers: their increasing role in the diagnosis, characterization, and therapy guidance in pancreatic cancer. Mol Cancer Ther. 2006;5(4):787–96. doi: 10.1158/1535-7163.MCT-06-0005.PubMedCrossRefGoogle Scholar
  4. 4.
    Maitra A, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol. 2006;20(2):211–26. doi: 10.1016/j.bpg.2005.10.002.PubMedCrossRefGoogle Scholar
  5. 5.
    Mimeault M, Brand RE, Sasson AA, Batra SK. Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies. Pancreas. 2005;31(4):301–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Goggins M. Molecular markers of early pancreatic cancer. J Clin Oncol. 2005;23(20):4524–31. doi: 10.1200/JCO.2005.19.711.PubMedCrossRefGoogle Scholar
  7. 7.
    Nelson WG, De Marzo AM, Yegnasubramanian S. Epigenetic alterations in human prostate cancers. Endocrinology. 2009;150(9):3991–4002. doi: 10.1210/en.2009-0573.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang G, Schetter A, He P, Funamizu N, Gaedcke J, Ghadimi BM, et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS One. 2012;7(2):e31507. doi: 10.1371/journal.pone.0031507PONE-D-11-21687.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64. doi: 10.1093/biostatistics/4.2.2494/2/249.PubMedCrossRefGoogle Scholar
  10. 10.
    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98(9):5116–21. doi: 10.1073/pnas.091062498091062498.PubMedCrossRefGoogle Scholar
  11. 11.
    Benjamini YH Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.Google Scholar
  12. 12.
    Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25(1):75–82. doi: 10.1093/bioinformatics/btn577btn577.PubMedCrossRefGoogle Scholar
  13. 13.
    Roider HG, Manke T, O'Keeffe S, Vingron M, Haas SA. PASTAA: identifying transcription factors associated with sets of co-regulated genes. Bioinformatics. 2009;25(4):435–42. doi: 10.1093/bioinformatics/btn627btn627.PubMedCrossRefGoogle Scholar
  14. 14.
    Roider HG, Kanhere A, Manke T, Vingron M. Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics. 2007;23(2):134–41. doi: 10.1093/bioinformatics/btl565.PubMedCrossRefGoogle Scholar
  15. 15.
    Das J, Yu H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol. 2012;6:92. doi: 10.1186/1752-0509-6-92.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35. doi: 10.1126/science.1132939.PubMedCrossRefGoogle Scholar
  17. 17.
    Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford). 2008;10(1):58–62. doi: 10.1080/13651820701883148.CrossRefGoogle Scholar
  18. 18.
    Tan M, Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol. 2007;608:119–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Santin AD, Bellone S, Siegel ER, Palmieri M, Thomas M, Cannon MJ, et al. Racial differences in the overexpression of epidermal growth factor type II receptor (HER2/neu): a major prognostic indicator in uterine serous papillary cancer. Am J Obstet Gynecol. 2005;192(3):813–8. doi: 10.1016/j.ajog.2004.10.605.PubMedCrossRefGoogle Scholar
  20. 20.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Collins MA, Brisset JC, Zhang Y, Bednar F, Pierre J, Heist KA, et al. Metastatic pancreatic cancer is dependent on oncogenic kras in mice. PLoS One. 2012;7(12):e49707. doi: 10.1371/journal.pone.0049707PONE-D-12-09212.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hruban RH, Adsay NV. Molecular classification of neoplasms of the pancreas. Hum Pathol. 2009;40(5):612–23. doi: 10.1016/j.humpath.2009.01.008.PubMedCrossRefGoogle Scholar
  23. 23.
    Dergham ST, Dugan MC, Sarkar FH, Vaitkevicius VK. Molecular alterations associated with improved survival in pancreatic cancer patients treated with radiation or chemotherapy. J Hepatobiliary Pancreat Surg. 1998;5(3):269–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Hezel AF, Deshpande V, Zimmerman SM, Contino G, Alagesan B, O'Dell MR, et al. TGF-beta and alphavbeta6 integrin act in a common pathway to suppress pancreatic cancer progression. Cancer Res. 2012;72(18):4840–5. doi: 10.1158/0008-5472.CAN-12-06340008-5472.CAN-12-0634.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Hahn SA, Hoque AT, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E, et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 1996;56(3):490–4.PubMedGoogle Scholar
  26. 26.
    Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res. 2010;70(12):4972–81. doi: 10.1158/0008-5472.CAN-09-3573.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Parsels LA, Qian Y, Tanska DM, Gross M, Zhao L, Hassan MC, et al. Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition. Clin Cancer Res. 2011;17(11):3706–15. doi: 10.1158/1078-0432.CCR-10-3082.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Vance S, Liu E, Zhao L, Parsels JD, Parsels LA, Brown JL, et al. Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1. Cell Cycle. 2011;10(24):4321–9. doi: 10.4161/cc.10.24.1866118661.PubMedCrossRefGoogle Scholar
  29. 29.
    Rajkumar T, Soumittra N, Nancy NK, Swaminathan R, Sridevi V, Shanta V. BRCA1, BRCA2 and CHEK2 (1100 del C) germline mutations in hereditary breast and ovarian cancer families in South India. Asian Pac J Cancer Prev. 2003;4(3):203–8.PubMedGoogle Scholar
  30. 30.
    Antoniou A, Pharoah P, Narod S, Risch HA, Eyfjord JE, Hopper J, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Greer JB, Whitcomb DC. Role of BRCA1 and BRCA2 mutations in pancreatic cancer. Gut. 2007;56(5):601–5. doi: 10.1136/gut.2006.101220.PubMedCrossRefGoogle Scholar
  32. 32.
    Iqbal J, Ragone A, Lubinski J, Lynch HT, Moller P, Ghadirian P, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2012;107(12):2005–9. doi: 10.1038/bjc.2012.483bjc2012483.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Liu R, Zhou A, Ren D, He A, Hu X, Zhang W, et al. Transcription factor specificity protein 1 (SP1) and activating protein 2alpha (AP-2alpha) regulate expression of human KCTD10 gene by binding to proximal region of promoter. FEBS J. 2009;276(4):1114–24. doi: 10.1111/j.1742-4658.2008.06855.x.PubMedCrossRefGoogle Scholar
  34. 34.
    Li B, Wang X, Zhou F, Saunders NA, Frazer IH, Zhao KN. Up-regulated expression of Sp1 protein coincident with a viral protein in human and mouse differentiating keratinocytes may act as a cell differentiation marker. Differentiation. 2008;76(10):1068–80. doi: 10.1111/j.1432-0436.2008.00300.x.PubMedCrossRefGoogle Scholar
  35. 35.
    Nichols AF, Itoh T, Zolezzi F, Hutsell S, Linn S. Basal transcriptional regulation of human damage-specific DNA-binding protein genes DDB1 and DDB2 by Sp1, E2F, N-myc and NF1 elements. Nucleic Acids Res. 2003;31(2):562–9.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Yuan P, Wang L, Wei D, Zhang J, Jia Z, Li Q, et al. Therapeutic inhibition of Sp1 expression in growing tumors by mithramycin a correlates directly with potent antiangiogenic effects on human pancreatic cancer. Cancer. 2007;110(12):2682–90. doi: 10.1002/cncr.23092.PubMedCrossRefGoogle Scholar
  37. 37.
    Won J, Yim J, Kim TK. Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem. 2002;277(41):38230–8. doi: 10.1074/jbc.M206064200.PubMedCrossRefGoogle Scholar
  38. 38.
    Tang S, Bhatia B, Zhou J, Maldonado CJ, Chandra D, Kim E, et al. Evidence that Sp1 positively and Sp3 negatively regulate and androgen does not directly regulate functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) gene expression in normal human prostate epithelial cells. Oncogene. 2004;23(41):6942–53. doi: 10.1038/sj.onc.1207913.PubMedCrossRefGoogle Scholar
  39. 39.
    Lin SY, Black AR, Kostic D, Pajovic S, Hoover CN, Azizkhan JC. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol. 1996;16(4):1668–75.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Jungert K, Buck A, von Wichert G, Adler G, König A, Buchholz M, et al. Sp1 is required for transforming growth factor-β-induced mesenchymal transition and migration in pancreatic cancer cells. Cancer Res. 2007;67(4):1563–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Rotheneder H, Geymayer S, Haidweger E. Transcription factors of the Sp1 family: interaction with E2F and regulation of the murine thymidine kinase promoter. J Mol Biol. 1999;293(5):1005–15. doi: 10.1006/jmbi.1999.3213.PubMedCrossRefGoogle Scholar
  42. 42.
    Karlseder J, Rotheneder H, Wintersberger E. Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol. 1996;16(4):1659–67.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Jia Z, Gao Y, Wang L, Li Q, Zhang J, Le X, et al. Combined treatment of pancreatic cancer with mithramycin A and tolfenamic acid promotes Sp1 degradation and synergistic antitumor activity. Cancer Res. 2010;70(3):1111–9. doi: 10.1158/0008-5472.CAN-09-3282.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Jutooru I, Chadalapaka G, Lei P, Safe S. Inhibition of NFkappaB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein down-regulation. J Biol Chem. 2010;285(33):25332–44. doi: 10.1074/jbc.M109.095240.PubMedCrossRefGoogle Scholar
  45. 45.
    Jenal M, Trinh E, Britschgi C, Britschgi A, Roh V, Vorburger SA, et al. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1. Mol Cancer Res. 2009;7(6):916–22. doi: 10.1158/1541-7786.MCR-08-0359.PubMedCrossRefGoogle Scholar
  46. 46.
    Shaw J, Yurkova N, Zhang T, Gang H, Aguilar F, Weidman D, et al. Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc Natl Acad Sci USA. 2008;105(52):20734–9. doi: 10.1073/pnas.0807735105.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu Y, Shi QL, Ma H, Zhou H, Lu Z, Yu B, et al. High thymidine kinase 1 (TK1) expression is a predictor of poor survival in patients with pT1 of lung adenocarcinoma. Tumour Biol. 2012;33(2):475–83. doi: 10.1007/s13277-011-0276-0.PubMedCrossRefGoogle Scholar
  48. 48.
    Prochazka V, Faber E, Raida L, Langova K, Indrak K, Papajik T. High baseline serum thymidine kinase 1 level predicts unfavorable outcome in patients with follicular lymphoma. Leuk Lymphoma. 2012;53(7):1306–10. doi: 10.3109/10428194.2011.654339.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Bao-sheng Wang
    • 1
  • Zhen Liu
    • 1
  • Shao-long Sun
    • 1
  • Yi Zhao
    • 1
  1. 1.Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangChina

Personalised recommendations