Skip to main content

Advertisement

Log in

XRCC1 R399Q polymorphism and risk of normal tissue injury after radiotherapy in breast cancer patients

  • Research Article
  • Published:
Tumor Biology

Abstract

Radiotherapy is an important weapon in the treatment of breast cancer, but normal tissue injury after radiotherapy can be a threat for patients. Genetic markers conferring the ability to identify hyper-sensitive patients at risk of normal tissue injury in advance would considerably improve therapy. Association studies on genetic variation and occurrence of normal tissue injury can help us identify such markers, but previous studies on the association between XRCC1 R399Q polymorphism and risk of normal tissue injury after radiotherapy in breast cancer patients report conflicting findings. We performed a meta-analysis to comprehensively evaluate the association between XRCC1 R399Q polymorphism and risk of normal tissue injury after radiotherapy in breast cancer patients. The pooled odds ratios (ORs) with their 95 % confidence interval (95 % CIs) were calculated to assess the strength of the association. Fourteen case–control studies with a total of 2,448 breast cancer cases were finally included into the meta-analysis. Overall, XRCC1 R399Q polymorphism was significantly associated with increased risk of normal tissue injury after radiotherapy under all three models (for QQ versus RR: fixed-effects OR = 1.06, 95 % CI 1.00–1.13, P = 0.050; for RQ versus RR: fixed-effects OR = 1.05, 95 % CI 1.00–1.10, P = 0.047; for QQ/RQ versus RR: fixed-effects OR = 1.26, 95 % CI 1.01–1.58, P = 0.041). The meta-analysis suggests that XRCC1 R399Q polymorphism was significantly associated with increased risk of normal tissue injury after radiotherapy in breast cancer patients, and XRCC1 R399Q polymorphism is a genetic marker of normal tissue injury after radiotherapy in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bertos NR, Park M. Breast cancer—one term, many entities? J Clin Invest. 2011;121:3789–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Warner E. Clinical practice. Breast-cancer screening. N Engl J Med. 2011;365:1025–32.

    Article  CAS  PubMed  Google Scholar 

  3. Balduzzi A, Leonardi MC, Cardillo A, Orecchia R, Dellapasqua S, Iorfida M, et al. Timing of adjuvant systemic therapy and radiotherapy after breast-conserving surgery and mastectomy. Cancer Treat Rev. 2010;36:443–50.

    Article  PubMed  Google Scholar 

  4. Recht A, Solin LJ. Breast-conserving surgery and radiotherapy in early-stage breast cancer: The importance of local control. Semin Radiat Oncol. 2011;21:3–9.

    Article  PubMed  Google Scholar 

  5. Andratschke N, Maurer J, Molls M, Trott KR. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention. Radiother Oncol. 2011;100:160–6.

    Article  PubMed  Google Scholar 

  6. Nagasubramanian R, Innocenti F, Ratain MJ. Pharmacogenetics in cancer treatment. Annu Rev Med. 2003;54:437–52.

    Article  CAS  PubMed  Google Scholar 

  7. Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH. Xrcc1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. Cell Res. 2008;18:48–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Andreassen CN, Alsner J, Overgaard M, Overgaard J. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother Oncol. 2003;69:127–35.

    Article  CAS  PubMed  Google Scholar 

  9. Chang-Claude J, Popanda O, Tan XL, Kropp S, Helmbold I, von Fournier D, et al. Association between polymorphisms in the DNA repair genes, XRCC1, APE1, and XPD and acute side effects of radiotherapy in breast cancer patients. Clin Cancer Res. 2005;11:4802–9.

    Article  CAS  PubMed  Google Scholar 

  10. Andreassen CN, Alsner J, Overgaard M, Sorensen FB, Overgaard J. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM—a study based on DNA from formalin fixed paraffin embedded tissue samples. Int J Radiat Biol. 2006;82:577–86.

    Article  CAS  PubMed  Google Scholar 

  11. Chang-Claude J, Ambrosone CB, Lilla C, Kropp S, Helmbold I, von Fournier D, et al. Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. Br J Cancer. 2009;100:1680–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zschenker O, Raabe A, Boeckelmann IK, Borstelmann S, Szymczak S, Wellek S, et al. Association of single nucleotide polymorphisms in ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with clinical and cellular radiosensitivity. Radiother Oncol. 2010;97:26–32.

    Article  CAS  PubMed  Google Scholar 

  13. Mangoni M, Bisanzi S, Carozzi F, Sani C, Biti G, Livi L, et al. Association between genetic polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes and radiosensitivity in breast cancer patients. Int J Radiat Oncol Biol Phys. 2011;81:52–8.

    Article  CAS  PubMed  Google Scholar 

  14. Falvo E, Strigari L, Citro G, Giordano C, Boboc G, Fabretti F, et al. Snps in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation. J Exp Clin Cancer Res. 2012;31:7.

    Article  CAS  PubMed  Google Scholar 

  15. Raabe A, Derda K, Reuther S, Szymczak S, Borgmann K, Hoeller U, et al. Association of single nucleotide polymorphisms in the genes ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with risk of severe erythema after breast conserving radiotherapy. Radiat Oncol. 2012;7:65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Terrazzino S, La Mattina P, Gambaro G, Masini L, Franco P, Canonico PL, et al. Common variants of GSTP1, GSTA1, and TGFBETA1 are associated with the risk of radiation-induced fibrosis in breast cancer patients. Int J Radiat Oncol Biol Phys. 2012;83:504–11.

    CAS  PubMed  Google Scholar 

  17. Terrazzino S, La Mattina P, Masini L, Caltavuturo T, Gambaro G, Canonico PL, et al. Common variants of eNOS and XRCC1 genes may predict acute skin toxicity in breast cancer patients receiving radiotherapy after breast conserving surgery. Radiother Oncol. 2012;103:199–205.

    Article  CAS  PubMed  Google Scholar 

  18. Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  19. Doubilet P, Weinstein MC, McNeil BJ. Use and misuse of the term “cost effective” in medicine. N Engl J Med. 1986;314:253–6.

    Article  CAS  PubMed  Google Scholar 

  20. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    CAS  PubMed  Google Scholar 

  21. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  Google Scholar 

  22. Moullan N, Cox DG, Angele S, Romestaing P, Gerard JP, Hall J. Polymorphisms in the DNA repair gene xrcc1, breast cancer risk, and response to radiotherapy. Cancer Epidemiol Biomark Prev. 2003;12:1168–74.

    CAS  Google Scholar 

  23. Giotopoulos G, Symonds RP, Foweraker K, Griffin M, Peat I, Osman A, et al. The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br J Cancer. 2007;96:1001–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhou L, Xia J, Li H, Dai J, Hu Y. Association of xrcc1 variants with acute skin reaction after radiotherapy in breast cancer patients. Cancer Biother Radiopharm. 2010;25:681–5.

    Article  CAS  PubMed  Google Scholar 

  25. Falvo E, Strigari L, Citro G, Giordano C, Arcangeli S, Soriani A, et al. Dose and polymorphic genes xrcc1, xrcc3, gst play a role in the risk of articledeveloping erythema in breast cancer patients following single shot partial breast irradiation after conservative surgery. BMC Cancer. 2011;11:291.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Huang Y, Li L, Yu L. XRCC1 arg399gln, arg194trp and arg280his polymorphisms in breast cancer risk: a meta-analysis. Mutagenesis. 2009;24:331–9.

    Article  CAS  PubMed  Google Scholar 

  27. Saadat M. Haplotype analysis of XRCC1 (at codons 194 and 399) and susceptibility to breast cancer, a meta-analysis of the literatures. Breast Cancer Res Treat. 2010;124:785–91.

    Article  CAS  PubMed  Google Scholar 

  28. Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C, et al. Targeting xrcc1 deficiency in breast cancer for personalized therapy. Cancer Res. 2013;73:1621–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the persons who give the help for the study.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Liu.

Additional information

Y. Zhou and W. Zhou contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zhou, W., Liu, Q. et al. XRCC1 R399Q polymorphism and risk of normal tissue injury after radiotherapy in breast cancer patients. Tumor Biol. 35, 21–25 (2014). https://doi.org/10.1007/s13277-013-0990-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0990-x

Keywords

Navigation