Advertisement

Tumor Biology

, Volume 34, Issue 6, pp 3773–3783 | Cite as

Tumor suppressor in lung cancer 1 (TSLC1), a novel tumor suppressor gene, is implicated in the regulation of proliferation, invasion, cell cycle, apoptosis, and tumorigenicity in cutaneous squamous cell carcinoma

  • Dong Liu
  • Xianjun Feng
  • Xinjun Wu
  • Zhanguo Li
  • Wanling Wang
  • Yipeng Tao
  • Yonghua Xia
Research Article

Abstract

Tumor suppressor in lung cancer 1 (TSLC1) is tightly implicated in a variety of biological processes and plays critical roles in tumor development and progression. However, the roles of TSLC1 in cutaneous squamous cell carcinoma (CSCC) remain to be unraveled. Here, we reported the TSLC1 gene that was significantly downregulated in CSCC tissues and cells, and survival times of patients with TSLC1 at a low level were markedly lower than that at a high level (P = 0.0070). A stepwise investigation demonstrated that an elevated TSLC1 level evoked obvious proliferation and invasion inhibitions and arrested cell cycle at G0/G1 phase in A431 cells. Moreover, increase of caspase-3 activity mediated by elevated TSLC1 level induced cell apoptosis in A431 cells. Most notably, upregulation of TSLC1 expression reduced the numbers of colony formation and tumorigenicity. Collectively, our results presented herein suggest that TSLC1 as tumor suppressor may play prominent roles in development and progression of CSCC via regulation of different biological processes.

Keywords

Tumor suppressor in lung cancer 1 Proliferation Invasion Cell cycle Apoptosis Tumorigenicity 

Notes

Acknowledgments

This work was supported by a grant for a research contact with the Education Bureau of Henan Province (No. 2011A320017).

References

  1. 1.
    Kane CL, Keehn CA, Smithberger E, Glass LF. Histopathology of cutaneous squamous cell carcinoma and its variants. Semin Cutan Med Surg. 2004;23(1):54–61.PubMedCrossRefGoogle Scholar
  2. 2.
    Lohmann CM, Solomon AR. Clinicopathologic variants of cutaneous squamous cell carcinoma. Adv Anat Pathol. 2001;8(1):27–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med. 2001;344(13):975–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Veness MJ, Morgan GJ, Palme CE, Gebski V. Surgery and adjuvant radiotherapy in patients with cutaneous head and neck squamous cell carcinoma metastatic to lymph nodes: combined treatment should be considered best practice. Laryngoscope. 2005;115(5):870–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Marks R. Squamous cell carcinoma. Lancet. 1996;347(9003):735–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Clayman GL, Lee JJ, Holsinger FC, Zhou X, Duvic M, El-Naggar AK, et al. Mortality risk from squamous cell skin cancer. J Clin Oncol. 2005;23(4):759–65.PubMedCrossRefGoogle Scholar
  7. 7.
    Lippman SM, Parkinson DR, Itri LM, Weber RS, Schantz SP, Ota DM, et al. 13-cis-Retinoic acid and interferon alpha-2a: effective combination therapy for advanced squamous cell carcinoma of the skin. J Natl Cancer Inst. 1992;84(4):235–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Kwa RE, Campana K, Moy RL. Biology of cutaneous squamous cell carcinoma. J Am Acad Dermatol. 1992;26(1):1–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Stern RS, Thibodeau LA, Kleinerman RA, Parrish JA, Fitzpatrick TB. Risk of cutaneous carcinoma in patients treated with oral methoxsalen photochemotherapy for psoriasis. N Engl J Med. 1979;300(15):809–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, et al. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet. 2001;27(4):427–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Yamada D, Yoshida M, Williams YN, Fukami T, Kikuchi S, Masuda M, et al. Disruption of spermatogenic cell adhesion and male infertility in mice lacking TSLC1/IGSF4, an immunoglobulin superfamily cell adhesion molecule. Mol Cell Biol. 2006;26(9):3610–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Masuda M, Yageta M, Fukuhara H, Kuramochi M, Maruyama T, Nomoto A, et al. The tumor suppressor protein TSLC1 is involved in cell–cell adhesion. J Biol Chem. 2002;277(34):31014–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Shingai T, Ikeda W, Kakunaga S, Morimoto K, Takekuni K, Itoh S, et al. Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell–cell adhesion and transmembrane protein localization in epithelial cells. J Biol Chem. 2003;278(37):35421–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Houshmandi SS, Surace EI, Zhang HB, Fuller GN, Gutmann DH. Tumor suppressor in lung cancer-1 (TSLC1) functions as a glioma tumor suppressor. Neurology. 2006;67(10):1863–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Fukuhara H, Kuramochi M, Fukami T, Kasahara K, Furuhata M, Nobukuni T, et al. Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer. Jpn J Cancer Res. 2002;93(6):605–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Steenbergen RD, Kramer D, Braakhuis BJ, Stern PL, Verheijen RH, Meijer CJ, et al. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst. 2004;96(4):294–305.PubMedCrossRefGoogle Scholar
  17. 17.
    Lu B, Di W, Wang H, Ma H, Li J, Zhang Q. Tumor suppressor TSLC1 is implicated in cell proliferation, invasion and apoptosis in laryngeal squamous cell carcinoma by regulating Akt signaling pathway. Tumour Biol. 2012;33(6):2007–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Ito T, Shimada Y, Hashimoto Y, Kaganoi J, Kan T, Watanabe G, et al. Involvement of TSLC1 in progression of esophageal squamous cell carcinoma. Cancer Res. 2003;63(19):6320–6.PubMedGoogle Scholar
  19. 19.
    Zhang J, Ning J, Geng J, Cui B, Dong X. Down-regulation of tumor suppressor in lung cancer 1 (TSLC1) expression correlates with poor prognosis in patients with colon cancer. J Mol Histol. 2012;43(6):715–21.PubMedCrossRefGoogle Scholar
  20. 20.
    He G, Lei W, Wang S, Xiao R, Guo K, Xia Y, et al. Overexpression of tumor suppressor TSLC1 by a survivin-regulated oncolytic adenovirus significantly inhibits hepatocellular carcinoma growth. J Cancer Res Clin Oncol. 2012;138(4):657–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Yang G, He W, Cai M, Luo F, Kung H, Guan X, et al. Loss/down-regulation of tumor suppressor in lung cancer 1 expression is associated with tumor progression and is a biomarker of poor prognosis in ovarian carcinoma. Int J Gynecol Cancer. 2011;21(3):486–93.PubMedCrossRefGoogle Scholar
  22. 22.
    You Y, Ma L, You M, Li X, Wang S, Li H, et al. TSLC1 gene silencing in cutaneous melanoma. Melanoma Res. 2010;20(3):179–83.PubMedGoogle Scholar
  23. 23.
    Chen K, Wang G, Peng L, Liu S, Fu X, Zhou Y, et al. CADM1/TSLC1 inactivation by promoter hypermethylation is a frequent event in colorectal carcinogenesis and correlates with late stages of the disease. Int J Cancer. 2011;128(2):266–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Ando K, Ohira M, Ozaki T, Nakagawa A, Akazawa K, Suenaga Y, et al. Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer. 2008;123(9):2087–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Kikuchi S, Yamada D, Fukami T, Maruyama T, Ito A, Asamura H, et al. Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer. 2006;106(8):1751–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou L, Jiang W, Ren C, Yin Z, Feng X, Liu W, et al. Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein–Barr virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues. Neoplasia. 2005;7(9):809–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhao H, Yang J, Fan T, Li S, Ren X. RhoE functions as a tumor suppressor in esophageal squamous cell carcinoma and modulates the PTEN/PI3K/Akt signaling pathway. Tumour Biol. 2012;33(5):1363–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Xia J, Wang F, Wang L, Fan Q. Elevated serine protease HtrA1 inhibits cell proliferation, reduces invasion, and induces apoptosis in esophageal squamous cell carcinoma by blocking the nuclear factor-kappaB signaling pathway. Tumour Biol. 2013;34(1):317–28.PubMedCrossRefGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001;25(4):402–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Lu Z, Liu H, Xue L, Xu P, Gong T, Hou G. An activated Notch1 signaling pathway inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cell line EC9706. Int J Oncol. 2008;32(3):643–51.PubMedGoogle Scholar
  31. 31.
    Liang QL, Wang BR, Li ZY, Chen GQ, Zhou Y. Effect of TSLC1 gene on growth and apoptosis in human esophageal carcinoma Eca109 cells. Arch Med Sci. 2012;8(6):987–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Murakami Y. Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci. 2005;96(9):543–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999;39:295–312.PubMedCrossRefGoogle Scholar
  36. 36.
    Sherr CJ. Cancer cell cycles. Science. 1996;274(5293):1672–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.PubMedCrossRefGoogle Scholar
  38. 38.
    Qin L, Zhu W, Xu T, Hao Y, Zhang Z, Tian Y, et al. Effect of TSLC1 gene on proliferation, invasion and apoptosis of human hepatocellular carcinoma cell line HepG2. J Huazhong Univ Sci Technolog Med Sci. 2007;27(5):535–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Murakami Y. [TSLC1/IGSF4, a potential target of suppression for the invasion and metastasis of human cancer]. Nihon Rinsho. 2005;63 Suppl 12:454–8.PubMedGoogle Scholar
  40. 40.
    Galluzzi L, Kepp O, Kroemer G. Caspase-3 and prostaglandins signal for tumor regrowth in cancer therapy. Oncogene. 2012;31(23):2805–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis. 2007;12(9):1543–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Lei W, Liu HB, Wang SB, Zhou XM, Zheng SD, Guo KN, et al. Tumor suppressor in lung cancer-1 (TSLC1) mediated by dual-regulated oncolytic adenovirus exerts specific antitumor actions in a mouse model. Acta Pharmacol Sin. 2013;34(4):531–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Mao X, Seidlitz E, Truant R, Hitt M, Ghosh HP. Re-expression of TSLC1 in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth. Oncogene. 2004;23(33):5632–42.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Dong Liu
    • 1
  • Xianjun Feng
    • 2
  • Xinjun Wu
    • 3
  • Zhanguo Li
    • 1
  • Wanling Wang
    • 4
  • Yipeng Tao
    • 5
  • Yonghua Xia
    • 1
  1. 1.Department of Dermatologythe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
  2. 2.Department of Respiratory Medicinethe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
  3. 3.Department of General Surgerythe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
  4. 4.Department of Hematologythe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
  5. 5.Department of Thoracic Surgerythe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina

Personalised recommendations