Advertisement

Tumor Biology

, Volume 34, Issue 6, pp 3743–3751 | Cite as

Thrombomodulin mediates the progression of epithelial ovarian cancer cells

  • Lu-Min Chen
  • Weu Wang
  • Jen-Chih Lee
  • Feng-Hsiang Chiu
  • Chun-Te Wu
  • Cheng-Jeng Tai
  • Chien-Kai Wang
  • Chen-Jei Tai
  • Ming-Te Huang
  • Yu-Jia Chang
Research Article

Abstract

Thrombomodulin (TM), a natural anticoagulation factor, maintains circulation homeostasis in endothelial cells. TM has additional roles in modulating inflammation, thrombosis, and carcinogenesis. However, there is little information on the role of TM in the progression and metastasis of ovarian cancer. RNA silencing and cDNA expression vectors were used to manipulate target gene expression in ovarian cancer cells. Cell growth and migration were evaluated by an MTT assay, a wound-healing migration assay, a transwell migration assay, and a biosensor system. In this study, we found that TM silencing may enhance the growth rate of cells. The migratory ability of ovarian cancer cells was enhanced dramatically after TM silencing. TM overexpression in ovarian cells suppressed the proliferation and migration capability. Furthermore, we found that skov-3 cells treated with TM shRNA expressed high levels of fibronectin and vimentin and that the expression of these markers correlated positively with their migratory ability. Our results demonstrate that TM expression may regulate cell growth and migration in ovarian cancer cells. This finding suggests that TM may be a novel prognostic and therapeutic target for ovarian cancer.

Keywords

Thrombomodulin Ovarian cancer Migration 

Abbreviations

TM

Thrombomodulin

EMT

Epithelial-mesenchymal transition

EOC

Epithelial ovarian cancer

Notes

Acknowledgements

This study was supported by a grant from the Taipei Medical University/Shuang Ho Hospital (100TMU-SHH-08) and grants from National Science Council (NSC101-2314-B-038-030-MY2 and NSC101-2314-B-038-016-MY3).

Conflicts of interest

None

References

  1. 1.
    Permuth-Wey J, Sellers TA. Epidemiology of ovarian cancer. Methods Mol Biol. 2009;472:413–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Goff BA, Mandel LS, Drescher CW, Urban N, Gough S, Schurman KM, et al. Development of an ovarian cancer symptom index: possibilities for earlier detection. Cancer. 2007;109:221–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Asadollahi R, Hyde CA, Zhong XY. Epigenetics of ovarian cancer: from the lab to the clinic. Gynecol Oncol. 2010;118:81–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Fung-Kee-Fung M, Oliver T, Elit L, Oza A, Hirte HW, Bryson P. Optimal chemotherapy treatment for women with recurrent ovarian cancer. Curr Oncol. 2007;14:195–208.PubMedCrossRefGoogle Scholar
  6. 6.
    Roett MA, Evans P. Ovarian cancer: an overview. Am Fam Physician. 2009;80:609–16.PubMedGoogle Scholar
  7. 7.
    Bell DA. Origins and molecular pathology of ovarian cancer. Mod Pathol. 2005;18 Suppl 2:S19–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Feeley KM, Wells M. Precursor lesions of ovarian epithelial malignancy. Histopathology. 2001;38:87–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee MY, Shen MR. Epithelial-mesenchymal transition in cervical carcinoma. Am J Transl Res. 2012;4:1–13.PubMedGoogle Scholar
  11. 11.
    Esmon CT. The roles of protein c and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989;264:4743–6.PubMedGoogle Scholar
  12. 12.
    Imada S, Yamaguchi H, Nagumo M, Katayanagi S, Iwasaki H, Imada M. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays. Dev Biol. 1990;140:113–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Hanly AM, Winter DC. The role of thrombomodulin in malignancy. Semin Thromb Hemost. 2007;33:673–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, et al. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112:3661–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 1995;55:4196–200.PubMedGoogle Scholar
  16. 16.
    Kim SJ, Shiba E, Ishii H, Inoue T, Taguchi T, Tanji Y, et al. Thrombomodulin is a new biological and prognostic marker for breast cancer: an immunohistochemical study. Anticancer Res. 1997;17:2319–23.PubMedGoogle Scholar
  17. 17.
    Hanly AM, Redmond M, Winter DC, Brophy S, Deasy JM, Bouchier-Hayes DJ, et al. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer. 2006;94:1320–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu PL, Tsai JR, Chiu CC, Hwang JJ, Chou SH, Wang CK, et al. Decreased expression of thrombomodulin is correlated with tumor cell invasiveness and poor prognosis in nonsmall cell lung cancer. Mol Carcinog. 2010;49:874–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Ordonez NG. The immunohistochemical diagnosis of mesothelioma: a comparative study of epithelioid mesothelioma and lung adenocarcinoma. Am J Surg Pathol. 2003;27:1031–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Ordonez NG. The value of antibodies 44-3a6, sm3, hbme-1, and thrombomodulin in differentiating epithelial pleural mesothelioma from lung adenocarcinoma: a comparative study with other commonly used antibodies. Am J Surg Pathol. 1997;21:1399–408.PubMedCrossRefGoogle Scholar
  21. 21.
    Attanoos RL, Webb R, Dojcinov SD, Gibbs AR. Value of mesothelial and epithelial antibodies in distinguishing diffuse peritoneal mesothelioma in females from serous papillary carcinoma of the ovary and peritoneum. Histopathology. 2002;40:237–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Kao YC, Wu LW, Shi CS, Chu CH, Huang CW, Kuo CP, et al. Downregulation of thrombomodulin, a novel target of snail, induces tumorigenesis through epithelial-mesenchymal transition. Mol Cell Biol. 2010;30:4767–85.PubMedCrossRefGoogle Scholar
  23. 23.
    Ordonez NG. Role of immunohistochemistry in distinguishing epithelial peritoneal mesotheliomas from peritoneal and ovarian serous carcinomas. Am J Surg Pathol. 1998;22:1203–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Ordonez NG. The diagnostic utility of immunohistochemistry and electron microscopy in distinguishing between peritoneal mesotheliomas and serous carcinomas: a comparative study. Mod Pathol. 2006;19:34–48.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang SK, Liang PH, Astronomo RD, Hsu TL, Hsieh SL, Burton DR, et al. Targeting the carbohydrates on hiv-1: interaction of oligomannose dendrons with human monoclonal antibody 2g12 and dc-sign. Proc Natl Acad Sci U S A. 2008;105:3690–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, et al. Membrane nanotubes physically connect t cells over long distances presenting a novel route for hiv-1 transmission. Nat Cell Biol. 2008;10:211–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Chiou JF, Tai CJ, Huang MT, Wei PL, Wang YH, An J, et al. Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:603–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Chang YJ, Chiu CC, Wu CH, An J, Wu CC, Liu TZ, et al. Glucose-regulated protein 78 (grp78) silencing enhances cell migration but does not influence cell proliferation in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:1703–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Wei PL, Kuo LJ, Huang MT, Ting WC, Ho YS, Wang W, et al. Nicotine enhances colon cancer cell migration by induction of fibronectin. Ann Surg Oncol. 2011;18:1782–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Lien YC, Wang W, Kuo LJ, Liu JJ, Wei PL, Ho YS, et al. Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells. Ann Surg Oncol. 2011;18:2671–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Msaki A, Sanchez AM, Koh LF, Barre B, Rocha S, Perkins ND, et al. The role of rela (p65) threonine 505 phosphorylation in the regulation of cell growth, survival, and migration. Mol Biol Cell. 2011;22:3032–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Behrens J, Kameritsch P, Wallner S, Pohl U, Pogoda K. The carboxyl tail of cx43 augments p38 mediated cell migration in a gap junction-independent manner. Eur J Cell Biol. 2010;89:828–38.PubMedCrossRefGoogle Scholar
  33. 33.
    Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Darai E, Scoazec JY, Walker-Combrouze F, Mlika-Cabanne N, Feldmann G, Madelenat P, et al. Expression of cadherins in benign, borderline, and malignant ovarian epithelial tumors: a clinicopathologic study of 60 cases. Hum Pathol. 1997;28:922–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Veatch AL, Carson LF, Ramakrishnan S. Differential expression of the cell-cell adhesion molecule e-cadherin in ascites and solid human ovarian tumor cells. Int J Cancer. 1994;58:393–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. Emt transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91.PubMedCrossRefGoogle Scholar
  39. 39.
    Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12:895–904.PubMedCrossRefGoogle Scholar
  40. 40.
    Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115:3861–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Menzin AW, de Mola JR L, Bilker WB, Wheeler JE, Rubin SC, Feinberg RF. Identification of oncofetal fibronectin in patients with advanced epithelial ovarian cancer: detection in ascitic fluid and localization to primary sites and metastatic implants. Cancer. 1998;82:152–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Demeter A, Sziller I, Csapo Z, Olah J, Keszler G, Jeney A, et al. Molecular prognostic markers in recurrent and in non-recurrent epithelial ovarian cancer. Anticancer Res. 2005;25:2885–9.PubMedGoogle Scholar
  44. 44.
    Galazis N, Olaleye O, Haoula Z, Layfield R, Atiomo W. Proteomic biomarkers for ovarian cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration. Fertil Steril 2012; 98:1590–601.e1.Google Scholar
  45. 45.
    Kajiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A, et al. Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol. 2007;31:277–83.PubMedGoogle Scholar
  46. 46.
    Bast Jr RC. Molecular approaches to personalizing management of ovarian cancer. Ann Oncol. 2011;22 Suppl 8:viii5–viii15.PubMedGoogle Scholar
  47. 47.
    Banerjee S, Kaye S. The role of targeted therapy in ovarian cancer. Eur J Cancer. 2011;47 Suppl 3:S116–130.PubMedCrossRefGoogle Scholar
  48. 48.
    Cho KR, Shih IM. Ovarian cancer. Annu Rev Pathol. 2009;4:287–313.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Lu-Min Chen
    • 1
    • 2
  • Weu Wang
    • 3
    • 4
  • Jen-Chih Lee
    • 15
  • Feng-Hsiang Chiu
    • 16
  • Chun-Te Wu
    • 5
    • 6
  • Cheng-Jeng Tai
    • 7
    • 8
  • Chien-Kai Wang
    • 7
    • 8
    • 9
    • 10
  • Chen-Jei Tai
    • 9
    • 10
  • Ming-Te Huang
    • 3
    • 4
    • 11
  • Yu-Jia Chang
    • 3
    • 4
    • 12
    • 13
    • 14
  1. 1.Department of Obstetrics and Gynecology, Suzhou BenQ Medical CenterNanjing Medical UniversitySuzhouPeople’s Republic of China
  2. 2.Department of Obstetrics and GynecologyChina Medical University HospitalTaichingRepublic of China
  3. 3.Department of Surgery, College of MedicineTaipei Medical UniversityTaipei 110Republic of China
  4. 4.Department of SurgeryTaipei Medical University HospitalTaipeiRepublic of China
  5. 5.Chang Gung University College of MedicineTaipeiRepublic of China
  6. 6.Department of UrologyChang Gung Memorial Hospital at KeelungKeelungRepublic of China
  7. 7.Division of Hematology and Oncology, Department of Internal MedicineTaipei Medical University HospitalTaipeiRepublic of China
  8. 8.Department of Internal Medicine, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiRepublic of China
  9. 9.Department of Chinese MedicineTaipei Medical University HospitalTaipeiRepublic of China
  10. 10.Department of Obstetrics and Gynecology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiRepublic of China
  11. 11.Division of General Surgery, Department of Surgery, Shuang Ho HospitalTaipei Medical UniversityTaipeiRepublic of China
  12. 12.Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipei 110Republic of China
  13. 13.Center of Excellence for Cancer ResearchTaipei Medical UniversityTaipeiRepublic of China
  14. 14.Cancer Research CenterTaipei Medical University HospitalTaipeiRepublic of China
  15. 15.Department of Internal Medicine, Suzhou BenQ Medical CenterNanjing Medical UniversitySuzhouPeople’s Republic of China
  16. 16.Department of Emergency MedicineChang-Gung Memorial Hospital, Linkou BranchLinkouRepublic of China

Personalised recommendations