Tumor Biology

, Volume 34, Issue 6, pp 3705–3712 | Cite as

microRNA-148a suppresses human gastric cancer cell metastasis by reversing epithelial-to-mesenchymal transition

  • Sui-Han Wang
  • Xu Li
  • Li-Sheng Zhou
  • Zhong-Wei Cao
  • Chao Shi
  • Chong-Zhi Zhou
  • Yu-Gang Wen
  • Yang Shen
  • Ji-Kun Li
Research Article


MicroRNAs (miRNAs) are important regulators of gastric cancer development and progression. miR-148a is one of the most frequently and highly downregulated miRNAs in gastric cancer and is associated with advanced clinical stage and poor prognosis. In this study, we investigated the role of miR-148a in gastric cancer metastasis. Levels of miR-148a were determined by qRT-PCR in 60 gastric cancer samples. Cell migration and invasion assays were performed in a stably expressing miRNA-148a gastric cancer cell line established using a lentivirus expression system. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western Blots to detect epithelial marker E-cadherin and mesenchymal marker, vimentin. Luciferase reporter assays were used to identify downstream targets and biological function of miR-148a. Gastric cancer tissue had significantly lower expression of miR-148a compared to non-tumor tissue. Low miR-148a levels were associated with lymph node metastasis, N stage, and blood vessel invasion. miR-148a overexpression inhibited metastasis of gastric cancer cells. miR-148a overexpression also downregulated vimentin expression and upregulated E-cadherin expression, suggesting that miR-148a inhibited EMT. Finally, the SMAD2 gene was identified as the direct and functional target of miR-148a. MiR-148a suppresses gastric cancer metastasis and EMT, likely via SMAD2. Restoration of miR-148a expression could have important implications in gastric cancer therapy.


MicroRNA-148a Gastric cancer Epithelial-to-mesenchymal transition Smad2 Metastasis 



This work was supported by Shanghai Roche Pharmaceuticals Ltd.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, Negri E, et al. Recent patterns in gastric cancer: a global overview. Int J Cancer. 2009;125:666–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Valle J, Gisbert JP. Helicobacter pylori infection and precancerous lesions of the stomach. Hepatogastroenterology. 2001;48:1548–51.PubMedGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94:776–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol. 2010;12:390–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.PubMedGoogle Scholar
  10. 10.
    Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep. 2012;27:1019–26.PubMedGoogle Scholar
  11. 11.
    Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res. 2010;70:2339–49.PubMedCrossRefGoogle Scholar
  12. 12.
    Tchernitsa O, Kasajima A, Schäfer R, Kuban RJ, Ungethüm U, Györffy B, et al. Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol. 2010;222:310–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen Y, Song Y, Wang Z, Yue Z, Xu H, Xing C, et al. Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg. 2010;14:1170–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhu A, Xia J, Zuo J, Jin S, Zhou H, Yao L, et al. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol. 2012;29:2701–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14:79–89.PubMedCrossRefGoogle Scholar
  17. 17.
    Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18:1131–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang J, Zhang H, Liu J, Tu X, Zang Y, Zhu J, et al. miR-30 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun. 2012;417:1100.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, et al. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011;18:1702–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis. 2010;13:356–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A, et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem. 2010;285:19076–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhou X, Zhao F, Wang ZN, Song YX, Chang H, Chiang Y, et al. Altered expression of miR-152 and miR-148a in ovarian cancer is related to cell proliferation. Oncol Rep. 2012;27:447–54.PubMedGoogle Scholar
  24. 24.
    Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol. 2011;5:99.PubMedCrossRefGoogle Scholar
  25. 25.
    Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R, et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res. 2011;17:7574–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69:4443–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell. 2010;18:282–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Guo SL, Peng Z, Yang X, Fan KJ, Ye H, Li ZH, et al. miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int J Biol Sci. 2011;7:567–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Song YX, Yue ZY, Wang ZN, Xu YY, Luo Y, Xu HM, et al. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol Cancer. 2011;10:1.PubMedCrossRefGoogle Scholar
  31. 31.
    Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49.PubMedCrossRefGoogle Scholar
  32. 32.
    Kraljevic Pavelic S, Sedic M, Bosnjak H, Spaventi S, Pavelic K. Metastasis: new perspectives on an old problem. Mol Cancer. 2011;10:22.PubMedCrossRefGoogle Scholar
  33. 33.
    Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Jiang YG, Luo Y, He DL, Li X, Zhang LL, Peng T, et al. Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol. 2007;14:1034–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Miyazono K, Ehata S, Koinuma D. Tumor-promoting functions of transforming growth factor-β in progression of cancer. Updat J Med Sci. 2012;117:143–52.CrossRefGoogle Scholar
  36. 36.
    Mishra L, Derynck R, Mishra B. Transforming growth factor-beta signaling in stem cells and cancer. Science. 2005;310:68–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Mol Biol Cell. 2005;16:1987–2002.PubMedCrossRefGoogle Scholar
  38. 38.
    Fu H, Hu Z, Wen J, Wang K, Liu Y. TGF-beta promotes invasion and metastasis of gastric cancer cells by increasing fascin1 expression via ERK and JNK signal pathways. Acta Biochim Biophys Sin (Shanghai). 2009;41:648–56.CrossRefGoogle Scholar
  39. 39.
    Shinto O, Yashiro M, Toyokawa T, Nishii T, Kaizaki R, Matsuzaki T, et al. Phosphorylated smad2 in advanced stage gastric carcinoma. BMC Cancer. 2010;10:652.PubMedCrossRefGoogle Scholar
  40. 40.
    Geraldo MV, Yamashita AS, Kimura ET. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene. 2012;31:1910–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Xiao B, Zhu ED, Li N, Lu DS, Li W, Li BS, et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol Rep. 2012;27:559–66.PubMedGoogle Scholar
  42. 42.
    Ahn SM, Cha JY, Kim J, Kim D, Trang HT, Kim YM, et al. Smad3 regulates E-cadherin via miRNA-200 pathway. Oncogene. 2012;31:3051–9.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Sui-Han Wang
    • 1
  • Xu Li
    • 1
  • Li-Sheng Zhou
    • 1
  • Zhong-Wei Cao
    • 2
  • Chao Shi
    • 3
  • Chong-Zhi Zhou
    • 1
  • Yu-Gang Wen
    • 1
  • Yang Shen
    • 1
  • Ji-Kun Li
    • 1
  1. 1.Department of General Surgery, Shanghai First People’s Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Gastroenterology, Shanghai First People’s Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Gastrointestinal SurgeryYixing People’s HospitalYixingPeople’s Republic of China

Personalised recommendations