Advertisement

Tumor Biology

, Volume 34, Issue 6, pp 3659–3666 | Cite as

RTEL1 and TERT polymorphisms are associated with astrocytoma risk in the Chinese Han population

  • Tian-Bo Jin
  • Jia-Yi Zhang
  • Gang Li
  • Shu-Li Du
  • Ting-Ting Geng
  • Jing Gao
  • Qian-Ping Liu
  • Guo-Dong Gao
  • Long-Li Kang
  • Chao Chen
  • Shan-Qu Li
Research Article

Abstract

Common variants of multiple genes play a role in glioma onset. However, research related to astrocytoma, the most common primary brain neoplasm, is rare. In this study, we chose 21 tagging SNPs (tSNPs), previously reported to be associated with glioma risk in a Chinese case–control study from Xi’an, China, and identified their contributions to astrocytoma susceptibility. We found an association with astrocytoma susceptibility for two tSNPs (rs6010620 and rs2853676) in two different genes: regulator of telomere elongation helicase 1 (RTEL1) and telomerase reverse transcriptase (TERT), respectively. We confirmed our results using recessive, dominant, and additive models. In the recessive model, we found two tSNPs (rs2297440 and rs6010620) associated with increased astrocytoma risk. In the dominant model, we found that rs2853676 was associated with increased astrocytoma risk. In the additive model, all three tSNPs (rs2297440, rs2853676, and rs6010620) were associated with increased astrocytoma risk. Our results demonstrate, for the first time, the potential roles of RTEL1 and TERT in astrocytoma development.

Keywords

Single nucleotide polymorphism Astrocytoma RTEL1 TERT Case–control studies 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 81272776) and China Postdoctoral Science Foundation Project (no. 2013T60886).

Conflicts of interest

None

References

  1. 1.
    Nakamura M, Shimada K, Ishida E, Higuchi T, Nakase H, Sakaki T, et al. Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol. 2007;9(2):113–23. doi: 10.1215/15228517-2006-036.PubMedCrossRefGoogle Scholar
  2. 2.
    Foong CS, Sandanaraj E, Brooks HB, Campbell RM, Ang BT, Chong YK et al. Glioma-propagating cells as an in vitro screening platform: PLK1 as a case study. J Biomol Screen. 2012. doi: 10.1177/1087057112457820.
  3. 3.
    Malmer B, Gronberg H, Bergenheim AT, Lenner P, Henriksson R. Familial aggregation of astrocytoma in northern Sweden: an epidemiological cohort study. Int J Cancer. 1999;81(3):366–70. doi: 10.1002/(SICI)1097-0215(19990505)81:3<366::AID-IJC9>3.0.CO;2-0.PubMedCrossRefGoogle Scholar
  4. 4.
    Wiemels JL, Wiencke JK, Patoka J, Moghadassi M, Chew T, McMillan A, et al. Reduced immunoglobulin E and allergy among adults with glioma compared with controls. Cancer Res. 2004;64(22):8468–73. doi: 10.1158/0008-5472.CAN-04-1706.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M. Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev. 2010;20(3):239–44. doi: 10.1016/j.gde.2010.02.001.PubMedCrossRefGoogle Scholar
  6. 6.
    Rajaraman P, Wang SS, Rothman N, Brown MM, Black PM, Fine HA, et al. Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults. Cancer Epidemiol Biomarkers Prev. 2007;16(8):1655–61. doi: 10.1158/1055-9965.EPI-07-0314.PubMedCrossRefGoogle Scholar
  7. 7.
    Bethke L, Webb E, Murray A, Schoemaker M, Johansen C, Christensen HC, et al. Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma. Hum Mol Genet. 2008;17(6):800–5. doi: 10.1093/hmg/ddm351.PubMedCrossRefGoogle Scholar
  8. 8.
    Lai R, Crevier L, Thabane L. Genetic polymorphisms of glutathione S-transferases and the risk of adult brain tumors: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2005;14(7):1784–90. doi: 10.1158/1055-9965.EPI-05-0105.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu Y, Zhang H, Zhou K, Chen L, Xu Z, Zhong Y, et al. Tagging SNPs in non-homologous end-joining pathway genes and risk of glioma. Carcinogenesis. 2007;28(9):1906–13. doi: 10.1093/carcin/bgm073.PubMedCrossRefGoogle Scholar
  10. 10.
    Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904. doi: 10.1038/ng.407.PubMedCrossRefGoogle Scholar
  11. 11.
    Andersson U, Schwartzbaum J, Wiklund F, Sjostrom S, Liu Y, Tsavachidis S, et al. A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk. Acta Oncol. 2010;49(6):767–75. doi: 10.3109/0284186X.2010.480980.PubMedCrossRefGoogle Scholar
  12. 12.
    Brenner AV, Butler MA, Wang SS, Ruder AM, Rothman N, Schulte PA, et al. Single-nucleotide polymorphisms in selected cytokine genes and risk of adult glioma. Carcinogenesis. 2007;28(12):2543–7. doi: 10.1093/carcin/bgm210.PubMedCrossRefGoogle Scholar
  13. 13.
    Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41(8):905–8. doi: 10.1038/ng.408.PubMedCrossRefGoogle Scholar
  14. 14.
    Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009;Chapter 2:Unit 2 12. doi: 10.1002/0471142905.hg0212s60.
  15. 15.
    Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39(3):347–51. doi: 10.1038/ng1975.PubMedCrossRefGoogle Scholar
  16. 16.
    Adamec C. Example of the use of the nonparametric test. Test X2 for comparison of 2 independent examples. Cesk Zdrav. 1964;12:613–9.PubMedGoogle Scholar
  17. 17.
    Bland JM, Altman DG. Statistics notes. The odds ratio. BMJ. 2000;320(7247):1468.PubMedCrossRefGoogle Scholar
  18. 18.
    Youds JL, Mets DG, McIlwraith MJ, Martin JS, Ward JD, ONeil NJ, et al. RTEL-1 enforces meiotic crossover interference and homeostasis. Science. 2010;327(5970):1254–8. doi: 10.1126/science.1183112.PubMedCrossRefGoogle Scholar
  19. 19.
    Uringa EJ, Lisaingo K, Pickett HA, Brind'amour J, Rohde JH, Zelensky A, et al. RTEL1 contributes to DNA replication and repair and telomere maintenance. Mol Biol Cell. 2012;23(14):2782–92. doi: 10.1091/mbc.E12-03-0179.PubMedCrossRefGoogle Scholar
  20. 20.
    Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell. 2012;149(4):795–806. doi: 10.1016/j.cell.2012.03.030.PubMedCrossRefGoogle Scholar
  21. 21.
    Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O'Neil NJ, Petalcorin MI, et al. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell. 2008;135(2):261–71. doi: 10.1016/j.cell.2008.08.016.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu X, Sandhu S, Nabi Z, Ding H. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis. Transgenic Res. 2012. doi: 10.1007/s11248-011-9586-7.
  23. 23.
    Bai C, Connolly B, Metzker ML, Hilliard CA, Liu X, Sandig V, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci U S A. 2000;97(3):1230–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Muleris M, Almeida A, Gerbault-Seureau M, Malfoy B, Dutrillaux B. Identification of amplified DNA sequences in breast cancer and their organization within homogeneously staining regions. Genes Chromosomes Cancer. 1995;14(3):155–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature. 1998;396(6712):699–703. doi: 10.1038/25387.PubMedCrossRefGoogle Scholar
  26. 26.
    Song X, Zhou K, Zhao Y, Huai C, Yu H, Chen Y, et al. Fine mapping analysis of a region of 20q13.33 identified five independent susceptibility loci for glioma in a Chinese Han population. Carcinogenesis. 2012;33(5):1065–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang SS, Hartge P, Yeager M, Carreon T, Ruder AM, Linet M, et al. Joint associations between genetic variants and reproductive factors in glioma risk among women. Am J Epidemiol. 2011;174(8):901–8. doi: 10.1093/aje/kwr184.PubMedCrossRefGoogle Scholar
  28. 28.
    Garrels W, Kues WA, Herrmann D, Holler S, Baulain U, Niemann H. Ectopic expression of human telomerase RNA component results in increased telomerase activity and elongated telomeres in bovine blastocysts. Biol Reprod. 2012. doi: 10.1095/biolreprod.112.100198.PubMedGoogle Scholar
  29. 29.
    Cudre-Mauroux C, Occhiodoro T, Konig S, Salmon P, Bernheim L, Trono D. Lentivector-mediated transfer of Bmi-1 and telomerase in muscle satellite cells yields a duchenne myoblast cell line with long-term genotypic and phenotypic stability. Hum Gene Ther. 2003;14(16):1525–33. doi: 10.1089/104303403322495034.PubMedCrossRefGoogle Scholar
  30. 30.
    Di Donna S, Renault V, Forestier C, Piron-Hamelin G, Thiesson D, Cooper RN, et al. Regenerative capacity of human satellite cells: the mitotic clock in cell transplantation. Neurol Sci. 2000;21(5):S943–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Seigneurin-Venin S, Bernard V, Moisset PA, Ouellette MM, Mouly V, Di Donna S, et al. Transplantation of normal and DMD myoblasts expressing the telomerase gene in SCID mice. Biochem Biophys Res Commun. 2000;272(2):362–9. doi: 10.1006/bbrc.2000.2735.PubMedCrossRefGoogle Scholar
  32. 32.
    Seigneurin-Venin S, Bernard V, Tremblay JP. Telomerase allows the immortalization of T antigen-positive DMD myoblasts: a new source of cells for gene transfer application. Gene Ther. 2000;7(7):619–23. doi: 10.1038/sj.gt.3301132.PubMedCrossRefGoogle Scholar
  33. 33.
    Li G, Jin TB, Wei XB, He SM, Liang HJ, Yang HX, et al. Selected polymorphisms of GSTP1 and TERT were associated with glioma risk in Han Chinese. Cancer Epidemiol. 2012;36(6):525–7. doi: 10.1016/j.canep.2012.06.008.PubMedCrossRefGoogle Scholar
  34. 34.
    Melin B. Genetic causes of glioma: new leads in the labyrinth. Curr Opin Oncol. 2011;23(6):643–7. doi: 10.1097/CCO.0b013e32834a6f61.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Tian-Bo Jin
    • 1
    • 2
    • 3
  • Jia-Yi Zhang
    • 1
    • 2
  • Gang Li
    • 4
  • Shu-Li Du
    • 2
  • Ting-Ting Geng
    • 2
  • Jing Gao
    • 2
  • Qian-Ping Liu
    • 2
  • Guo-Dong Gao
    • 4
  • Long-Li Kang
    • 3
  • Chao Chen
    • 1
    • 2
    • 6
  • Shan-Qu Li
    • 5
    • 7
  1. 1.School of Life SciencesNorthwest UniversityXi’anChina
  2. 2.National Engineering Research Center for Miniaturized Detection SystemsXi’anChina
  3. 3.Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineTibet University for NationalitiesXianyangChina
  4. 4.Department of Neurosurgery, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina
  5. 5.Medical Center of Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina
  6. 6.Xi’anChina
  7. 7.Xi’anChina

Personalised recommendations