Tumor Biology

, Volume 34, Issue 6, pp 3593–3602 | Cite as

Tropomyosin-4 correlates with higher SBR grades and tubular differentiation in infiltrating ductal breast carcinomas: an immunohistochemical and proteomics-based study

  • Maria Kabbage
  • Mounir Trimeche
  • Hela ben Nasr
  • Philippe Hammann
  • Lauriane Kuhn
  • Bechr Hamrita
  • Karim Chahed
Research Article


The aim of this study is to evaluate tropomyosin-4 (TM4) expression in infiltrating ductal breast carcinomas (IDCAs), as well as its prognostic significance. Using a 2-DE/MALDI-TOF mass spectrometry investigation coupled with an immunohistochemical approach, we have assessed the expression of TM4 in IDCAs, as well as in other types of breast tumors. Proteomic analyses revealed an increased expression of tropomyosin-4 in IDCA tumors. Using immunohistochemistry, overexpression of tropomyosin-4 was confirmed in 51 additional tumor specimens. Statistical analyses revealed, however, no significant correlations between tropomyosin-4 expression and clinicopathological parameters of the disease including tumor stage, patient age, estrogen and progesterone receptor status, and lymph node metastasis occurrence. A significant association was found, however, with a high Scarf–Bloom–Richardson (SBR) grade, a known marker of tumor severity. Additionally, the SBR component showing a correlation with TM4 expression was the tubular differentiation status. This study demonstrates the upregulation of tropomyosin-4 in IDCA tissues, which may highlight its involvement in breast cancer development. Our findings also support a link between tropomyosin-4 expression and aggressiveness of IDCA tumors.


Tropomyosin-4 Infiltrating ductal breast carcinomas Tumor marker MALDI-TOF mass spectrometry 



This work was supported by le Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, le Ministère de la Santé Publique de la République Tunisienne, and by the Center National de Recherche Scientifique (Strasbourg, France).

Conflicts of interest



  1. 1.
    Hill C, Doyon F. Frequency of cancer in France: 2004 update. Bull Cancer. 2004;91:9–14.PubMedGoogle Scholar
  2. 2.
    Hondermarck H. Breast cancer: when proteomics challenges biological complexity. Mol Cell Proteomics. 2003;2:281–91.PubMedGoogle Scholar
  3. 3.
    Chung L, Baxter RC. Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays. Expert Rev Proteomics. 2012;9:599–614.PubMedCrossRefGoogle Scholar
  4. 4.
    Tang SS, Gui GP. Biomarkers in the diagnosis of primary and recurrent breast cancer. Biomark Med. 2012;6:567–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Qin XJ, Ling BX. Proteomic studies in breast cancer. Oncol Lett. 2012;3:735–43.PubMedGoogle Scholar
  6. 6.
    Bisca A, D'Ambrosio C, Scaloni A, Puglisi F, Aprile G, Piga A, et al. Proteomic evaluation of core biopsy specimens from breast lesions. Cancer Lett. 2004;204:79–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Hondermarck H, Vercoutter-Edouart AS, Révillion F, Lemoine J, el-Yazidi-Belkoura I, Nurcombe V, et al. Proteomics of breast cancer for marker discovery and signal pathway profiling. Proteomics. 2001;1:1216–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Imai K, Ichibangase T, Saitoh R, Hoshikawa Y. A proteomics study on human breast cancer cell lines by fluorogenic derivatization-liquid chromatography/tandem mass spectrometry. Biomed Chromatogr. 2008;22:1304–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Bergman AC, Benjamin T, Alaiya A, Waltham M, Sakaguchi K, Franzén B, et al. Identification of gel-separated tumor marker proteins by mass spectrometry. Electrophoresis. 2000;21:679–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas PA, Kirschmann DA, Cerhan JR, Folberg R, Seftor EA, Sellers TA, et al. Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients. Clin Cancer Res. 1999;5:2698–703.PubMedGoogle Scholar
  11. 11.
    Kanaujiya JK, Lochab S, Kapoor I, Pal P, Datta D, Bhatt ML, et al. Proteomic identification of Profilin1 as a co-repressor of estrogen receptor alpha in MCF7 breast cancer cells. Proteomics. 2013. doi: 10.1002/pmic.201200534.PubMedGoogle Scholar
  12. 12.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.PubMedCrossRefGoogle Scholar
  13. 13.
    O'Farrell PZ, Goodman HM, O'Farrell PH. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977;12:1133–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev. 2008;88:1–35.PubMedCrossRefGoogle Scholar
  15. 15.
    O'Neill GM, Stehn J, Gunning PW. Tropomyosins as interpreters of the signaling environment to regulate the local cytoskeleton. Semin Cancer Biol. 2008;18:35–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Choi C, Kim D, Kim S, Jeong S, Song E, Helfman DM. From skeletal muscle to cancer: insights learned elucidating the function of tropomyosin. J Struct Biol. 2012;177:63–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Lin JJ, Warren KS, Wamboldt DD, Wang T, Lin JL. Tropomyosin isoforms in nonmuscle cells. Int Rev Cytol. 1997;170:1–38.PubMedCrossRefGoogle Scholar
  18. 18.
    Chou CC, Davis RC, Fuller ML, Slovin JP, Wong A, Wright J, et al. Gamma-actin: unusual mRNA 3'-untranslated sequence conservation and amino acid substitutions that may be cancer related. Proc Natl Acad Sci USA. 1987;84:2575–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Franzén B, Linder S, Alaiya AA, Eriksson E, Fujioka K, Bergman AC, et al. Analysis of polypeptide expression in benign and malignant human breast lesions. Electrophoresis. 1997;18:582–7.PubMedCrossRefGoogle Scholar
  20. 20.
    He QY, Cheung YH, Leung SY, Yuen ST, Chu KM, Chiu JF. Diverse proteomic alterations in gastric adenocarcinoma. Proteomics. 2004;4:3276–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Pawlak G, Helfman DM. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev. 2001;11:41–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Bhattacharya B, Prasad GL, Valverius EM, Salomon DS, Cooper HL. Tropomyosins of human mammary epithelial cells: consistent defects of expression in mammary carcinoma cell lines. Cancer Res. 1990;50:2105–12.PubMedGoogle Scholar
  23. 23.
    Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282:14328–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Ormsby AH, Goldblum JR, Rice TW, Richter JE, Gramlich TL. The utility of cytokeratin subsets in distinguishing Barrett's-related esophageal adenocarcinoma from gastric adenocarcinoma. Histopathology. 2001;38:307–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Li DQ, Wang L, Fei F, Hou YF, Luo JM, Wei-Chen, et al. Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics. 2006;6:3352–68.PubMedCrossRefGoogle Scholar
  26. 26.
    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Abouhamed M, Reichenberg S, Robenek H, Plenz G. Tropomyosine-4 expression is enhanced in differentiating smooth muscle cells in vitro and during atherogenesis. Eur J Cell Biol. 2003;82:473–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Qi Y, Chiu JF, Wang L, Kwong DL, He QY. Comparative proteomic analysis of esophageal squamous cell carcinoma. Proteomics. 2005;5:2960–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Suehara Y, Kondo T, Fujii K, Hasegawa T, Kawai A, Seki K, et al. Proteomic signatures corresponding to histological classification and grading of soft tissue sarcomas. Proteomics. 2006;6:4402–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Katsetos CD, Herman MM, Mörk SJ. Class III beta-tubulin in human development and cancer. Cell Motil Cytoskeleton. 2003;55:77–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Mialhe A, Lafanechère L, Treilleux I, Peloux N, Dumontet C, Brémond A, et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 2001;61:5024–7.PubMedGoogle Scholar
  32. 32.
    Kuroda H, Ishida F, Nakai M, Ohnisi K, Itoyama S. Basal cytokeratin expression in relation to biological factors in breast cancer. Hum Pathol. 2008;39:1744–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Zheng Q, Safina A, Bakin AV. Role of high-molecular weight tropomyosins in TGF-beta-mediated control of cell motility. Int J Cancer. 2008;122:78–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Landreth GE, Williams LK, Rieser GD. Association of the epidermal growth factor receptor kinase with the detergent-insoluble cytoskeleton of A431 cells. J Cell Biol. 1985;101:1341–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Prasad GL. Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Lett. 2002;183:205–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Stehn JR, Schevzov G, O'Neill GM, Gunning PW. Specialization of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Curr Cancer Drug Targets. 2006;6:245–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Novy RE, Lin JL, Lin CS, Lin JJ. Human fibroblast tropomyosin isoforms: characterization of cDNA clones and analysis of tropomyosin isoform expression in human tissues and in normal and transformed cells. Cell Motil Cytoskeleton. 1993;25:267–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsumura F, Lin JJ, Yamashiro-Matsumura S, Thomas GP, Topp WC. Differential expression of tropomyosin forms in the microfilaments isolated from normal and transformed rat cultured cells. J Biol Chem. 1983;258:13954–64.PubMedGoogle Scholar
  39. 39.
    Prasad GL, Fuldner RA, Cooper HL. Expression of transduced tropomyosin 1 cDNA suppresses neoplastic growth of cells transformed by the ras oncogene. Proc Natl Acad Sci USA. 1993;90:7039–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Franzén B, Linder S, Uryu K, Alaiya AA, Hirano T, Kato H, et al. Expression of tropomyosin isoforms in benign and malignant human breast lesions. Br J Cancer. 1996;73:909–13.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Maria Kabbage
    • 1
  • Mounir Trimeche
    • 2
  • Hela ben Nasr
    • 3
  • Philippe Hammann
    • 4
  • Lauriane Kuhn
    • 4
  • Bechr Hamrita
    • 5
  • Karim Chahed
    • 1
    • 6
  1. 1.Laboratoire d’Immuno-Oncologie MoléculaireFaculté de Médecine de MonastirAl MunastirTunisia
  2. 2.Département de PathologieCenter Hospitalo-Universitaire-Farhat-HachedSousseTunisia
  3. 3.Institut Supérieur des Sciences Appliquées et Technologiques ISSATMahdiaTunisia
  4. 4.Plate Forme ProtéomiqueInstitut de Biologie Moléculaire et Cellulaire, CNRSStrasbourgFrance
  5. 5.Institut Supérieur de Biotechnologie de MonastirMonastirTunisia
  6. 6.Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia

Personalised recommendations