Tumor Biology

, Volume 34, Issue 6, pp 3397–3405 | Cite as

Abnormal expression of insulin-like growth factor-I receptor in hepatoma tissue and its inhibition to promote apoptosis of tumor cells

  • Zhizhen Dong
  • Min Yao
  • Li Wang
  • Xiaodi Yan
  • Xing Gu
  • Yun Shi
  • Ninghua Yao
  • Liwei Qiu
  • Wei Wu
  • Dengfu Yao
Research Article


Abnormal signaling of insulin-like growth factor I receptor (IGF-IR) is associated with hepatocellular carcinoma, but the underlying molecular mechanisms remain largely unknown. The objective of this study was to investigate IGF-IR’s role as a signaling molecule, its pathological alteration in hepatoma tissues, and its effect on hepatoma cell proliferation when inhibited. As measured by immunohistochemical analysis, the incidence of hepatic IGF-IR expression in cancerous tissue was 80.0 % (24 of 30), which was significantly higher (P < 0.05) than 43.3 % (13 of 30) occurrence in the surrounding tissue and the nondetectable (0 of 30) frequency in the distal cancerous tissue. Hepatoma IGF-IR expression was correlated to the differentiation degree and not to the number or size of tumors, HBV infection, and AFP level. The in vitro IGF-IR expression in hepatoma cells was down-regulated significantly by picropodophyllin, a specific kinase inhibitor, in a time- and dose-dependent manner. Cell proliferation was inhibited through typical mechanisms of promoting apoptosis and cell cycle arrest (G2/M phase). Up-regulation of IGF-IR in hepatocarcinogenesis suggests that the down-regulation of IGF-IR expression could be a specific molecular target for hepatoma cell proliferation.


Hepatocellular carcinoma Insulin-like growth factor I receptor Molecular target Gene amplification Sequencing Proliferation inhibition Apoptosis 





Hepatitis B virus


Hepatocellular carcinoma


Hepatitis C virus


Insulin-like growth factor


Insulin-like growth factor-II


Insulin-like growth factor I receptor




Sodium dodecyl sulfate



This work was supported by grants-in-aid from some Projects of the Society Development (HS2012039) of Nantong, the Jiangsu Health Projects (BL2012053, K201102), the Priority Academic Program Development of Jiangsu (PADA), and the International S&T Cooperation Program of China (2013DFA32150).

Conflicts of interest



  1. 1.
    Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48(6):2047–63. PMID: 19003900.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoshida Y. Molecular signatures and prognosis of hepatocellular carcinoma. Minerva Gastroenterol Dietol. 2011;57(3):311–22. PMID: 21769080.PubMedGoogle Scholar
  3. 3.
    Qian J, Yao D, Dong Z, Wu W, Qiu L, Yao N, et al. Characteristics of hepatic igf-ii expression and monitored levels of circulating IGF-II mRNA in metastasis of hepatocellular carcinoma. Am J Clin Pathol. 2010;134(5):799–806. PMID: 20959664.PubMedCrossRefGoogle Scholar
  4. 4.
    Yao DF, Dong ZZ, Yao M. Specific molecular markers in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2007;6(3):241–7. PMID: 17548245.PubMedGoogle Scholar
  5. 5.
    Hyodo T, Murakami T, Imai Y, Okada M, Hori M, Kagawa Y, et al. Hypovascular nodules in patients with chronic liver disease: risk factors for development of hypervascular hepatocellular carcinoma. Radiology. 2013;266(2):480–90. PMID: 23362095.PubMedCrossRefGoogle Scholar
  6. 6.
    Ling TC, Kang JI, Bush DA, Slater JD, Yang GY. Proton therapy for hepatocellular carcinoma. Chin J Cancer Res. 2012;24(4):361–7. PMID: 23359779.PubMedCrossRefGoogle Scholar
  7. 7.
    Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2012;13(2):123–35. PMID: 23344543.CrossRefGoogle Scholar
  8. 8.
    Kew MC. Hepatitis B, virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol. 2011;26(S1):144–52. PMID: 21199526.PubMedCrossRefGoogle Scholar
  9. 9.
    Hu J, Gao DZ. Distinction immune genes of hepatitis-induced heptatocellular carcinoma. Bioinformatics. 2012;28(24):3191–4. PMID: 23104883.PubMedCrossRefGoogle Scholar
  10. 10.
    Cheng W, Tseng CJ, Lin TT, Cheng I, Pan HW, Hsu HC, et al. Glypican-3- mediated oncogenesis involves the insulin-like growth factor-signaling pathway. Carcinogenesis. 2008;29(7):1319–26. PMID: 18413366.PubMedCrossRefGoogle Scholar
  11. 11.
    Chi M, Mikhitarian K, Shi C, Goff LW. Management of combined hepatocellular-cholangiocarcinoma: a case report and literature review. Gastrointest Cancer Res. 2012;5(6):199–202. PMID: 23293701.PubMedGoogle Scholar
  12. 12.
    Maakaron JE, Cappellini MD, Graziadei G, Ayache JB, Taher AT. Hepatocellular carcinoma in hepatitis-negative patients with thalassemia intermedia: a closer look at the role of siderosis. Ann Hepatol. 2013;12(1):142–6. PMID: 23293206.PubMedGoogle Scholar
  13. 13.
    Cheng JW, Lv Y. New progress of non-surgical treatments for hepatocellular carcinoma. Med Oncol. 2013;30(1):381. PMID: 23292867.PubMedCrossRefGoogle Scholar
  14. 14.
    Hamed O, Kimchi ET, Sehmbey M, Gusani NJ, Kaifi JT, Staveley-O’Carroll K. Impact of genetic targets on cancer therapy: hepatocellular cancer. Adv Exp Med Biol. 2013;779(1):67–90. PMID: 23288636.PubMedCrossRefGoogle Scholar
  15. 15.
    Ubagai T, Kikuchi T, Fukusato T, Ono Y. Aflatoxin B1 modulates the insulin- like growth factor-2 dependent signaling axis. Toxicol In Vitro. 2010;24(3):783–9. PMID: 20036727.PubMedCrossRefGoogle Scholar
  16. 16.
    Duan Z, Choy E, Harmon D, Yang C, Ryu K, Schwab J, et al. Insulin-like growth factor-I receptor tyrosine kinase inhibitor cyclolignan picropodophyllin inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines. Mol Cancer Ther. 2009;8(8):2122–30. PMID: 19638450.PubMedCrossRefGoogle Scholar
  17. 17.
    Vasilcanu D, Girnita A, Girnita L, Vasilcanu R, Axelson M, Larsson O. The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene. 2004;23(47):7854–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Freise C, Ruehl M, Erben U, Neumann U, Seehofer D, Kim KY, et al. A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines. BMC Complement Altern Med. 2011;11(1):39–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Weng CJ, Hsieh YH, Tsai CM, Chu YH, Ueng KC, Liu YF, et al. Relationship of insulin-like growth factors system gene polymorphisms with the susceptibility and pathological development of hepatocellular carcinoma. Ann Surg Oncol. 2010;17(7):1808–15. PMID: 20119675.PubMedCrossRefGoogle Scholar
  20. 20.
    Qiu LW, Yao DF, Zong L, Lu YY, Huang H, Wu W, et al. Abnormal expression of insulin-like growth factor-II and its dynamic quantitative analysis at different stages of hepatocellular carcinoma development. Hepatobiliary Pancreat Dis Int. 2008;7(4):406–11. PMID: 18693177.PubMedGoogle Scholar
  21. 21.
    Li SS, Yao DF, Wang L, Wu W, Qiu LW, Yao M, et al. Expression characteristics of HIF-1α and its clinical values in diagnosis and prognosis of hepatocellular carcinoma. Hepat Mon. 2011;11(10):821–8. PMID: 22224081.PubMedGoogle Scholar
  22. 22.
    Campbell CI, Moorehead RA. Mammary tumors that become independent of the type I insulin-like growth factor receptor express elevated levels of platelet-derived growth factor receptors. BMC Cancer. 2011;11:480. PMID: 22070644.PubMedCrossRefGoogle Scholar
  23. 23.
    El Tayebi HM, Salah W, El Sayed IH, Salam EM, Zekri AR, Zayed N, et al. Expression of insulin-like growth factor-II, matrix metallo- proteinases, and their tissue inhibitors as predictive markers in the peripheral blood of HCC patients. Biomarkers. 2011;16(4):346–54. PMID: 21506705.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen YW, Boyartchuk V, Lewis BC. Differential roles of insulin-like growth factor receptor- and insulin receptor-mediated signaling in the phenotypes of hepatocellular carcinoma cells. Neoplasia. 2009;11(9):835–45. PMID: 19724677.PubMedGoogle Scholar
  25. 25.
    Breuhahn K, Schirmacher P. Reactivation of the insulin-like growth factor-II signaling pathway in human hepatocellular carcinoma. World J Gastroenterol. 2008;14(11):1690–8. PMID: 18350600.PubMedCrossRefGoogle Scholar
  26. 26.
    Aleem E, Nehrbass D, Klimek F, Mayer D, Bannasch P. Upregulation of the insulin receptor and type I insulin-like growth factor receptor are early events in hepatocarcinogenesis. Toxicol Pathol. 2011;39(3):524–43. PMID: 21411721.PubMedCrossRefGoogle Scholar
  27. 27.
    Nussbaum T, Samarin J, Ehemann V, Bissinger M, Ryschich E, Khamidjanov A, et al. Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepato- carcinogenesis. Hepatology. 2008;48(1):146–56. PMID: 18537183.PubMedCrossRefGoogle Scholar
  28. 28.
    Alexia C, Bras M, Fallot G, Vadrot N, Daniel F, Lasfer M, et al. Pleiotropic effects of PI-3' kinase/Akt signaling in human hepatoma cell proliferation and drug-induced apoptosis. Ann NY Acad Sci. 2006;1090(1):1–17. PMID: 17384242.PubMedCrossRefGoogle Scholar
  29. 29.
    Alexia C, Fallot G, Lasfer M, Schweizer-Groyer G, Groyer A. An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug- induced apoptosis. Biochem Pharmacol. 2004;68(6):1003–15. PMID: 15313394.PubMedCrossRefGoogle Scholar
  30. 30.
    Tovar V, Alsinet C, Villanueva A, Hoshida Y, Chiang DY, Solé M, et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52(4):550–9. PMID: 20206398.PubMedCrossRefGoogle Scholar
  31. 31.
    Rehem RN, El-Shikh WM. Serum IGF-1, IGF-2 and IGFBP-3 as parameters in the assessment of liver dysfunction in patients with hepatic cirrhosis and in the diagnosis of hepatocellular carcinoma. Hepatogastroenterology. 2011;58(107–108):949–54. PMID: 21830422.PubMedGoogle Scholar
  32. 32.
    Lin RX, Wang ZY, Zhang N, Tuo CW, Liang QD, Sun YN, et al. Inhibition of hepatocellular carcinoma growth by antisense oligonucleotides to type I insulin-like growth factor receptor in vitro and in an orthotopic model. Hepatol Res. 2007;37(5):366–75. PMID: 17441810.PubMedCrossRefGoogle Scholar
  33. 33.
    Tomizawa M, Yokosuka O. Picropodophyllin suppresses the proliferation and invasion of hepatocellular carcinoma under serum starvation. Mol Med Rep. 2008;1(5):685–8. PMID: 21479470.PubMedGoogle Scholar
  34. 34.
    Yao N, Yao D, Wang L, Dong Z, Wu W, Qiu L, et al. Inhibition of autocrine IGF-II on effect of human HepG2 cell proliferation and angiogenesis factor expression. Tumour Biol. 2012;33(5):1767–76. PMID: 22684773.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhao H, Desai V, Wang J, Epstein DM, Miglarese M, Buck E. Epithelial-mesenchymal transition predicts sensitivity to the dual IGF-1R/IR inhibitor OSI-906 in hepatocellular carcinoma cell lines. Mol Cancer Ther. 2012;11:503–13. PMID: 22161861.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Zhizhen Dong
    • 1
  • Min Yao
    • 2
  • Li Wang
    • 2
  • Xiaodi Yan
    • 4
  • Xing Gu
    • 4
  • Yun Shi
    • 4
  • Ninghua Yao
    • 4
  • Liwei Qiu
    • 3
  • Wei Wu
    • 3
  • Dengfu Yao
    • 3
  1. 1.Department of DiagnosticsAffiliated Hospital of Nantong UniversityNantongChina
  2. 2.Medical School of Nantong UniversityNantongChina
  3. 3.Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
  4. 4.Department of OncologyAffiliated Hospital of Nantong UniversityNantongChina

Personalised recommendations