Tumor Biology

, Volume 34, Issue 5, pp 3265–3269 | Cite as

RETRACTED ARTICLE: Association between XRCC1 Arg399Gln polymorphism and hepatitis virus-related hepatocellular carcinoma risk in Asian population

  • Dan Wu
  • Honglei Jiang
  • Qiuhong Gu
  • Dan Zhang
  • Zhiwei Li
Research Article


To investigate the association between X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln polymorphism and hepatitis virus-related hepatocellular carcinoma risk, we performed a systematic meta-analysis of eligible case–control studies. Eligible studies were identified from the PubMed, Embase, and Chinese National Knowledge Infrastructure databases up to March 2013. The odds ratios (ORs) and corresponding 95 % confidence interval (95 % CI) of XRCC1 Arg399Gln polymorphism in hepatitis virus-related hepatocellular carcinoma cases compared with those in controls were calculated. The meta-analysis was performed using fixed-effect or random-effect methods according to the absence or presence of heterogeneity. This meta-analysis included 1,558 cases with hepatitis virus-related hepatocellular carcinoma and 1,338 controls. Meta-analysis of available data showed that there was no association between XRCC1 Arg399Gln polymorphism and risk of hepatitis virus-related hepatocellular carcinoma under all contrast models (Gln vs. Arg: fixed-effect OR = 0.92, 95 % CI 0.82–1.04, P = 0.18; GlnGln vs. ArgArg: random-effect OR = 0.79, 95 % CI 0.50–1.25, P = 0.32; GlnGln/ArgGln vs. ArgArg: fixed-effect OR = 0.92, 95 % CI 0.79–1.07, P = 0.28; and GlnGln vs. ArgArg/ArgGln: random-effect OR = 0.83, 95 % CI 0.52–1.34, P = 0.45). Sensitivity analysis further showed that there was no association between XRCC1 Arg399Gln polymorphism and risk of hepatitis B-related hepatocellular carcinoma under all contrast models (Gln vs. Arg: fixed-effect OR = 0.93, 95 % CI 0.82–1.05, P = 0.25; GlnGln vs. ArgArg: fixed-effect OR = 0.86, 95 % CI 0.64–1.16, P = 0.32; GlnGln/ArgGln vs. ArgArg: fixed-effect OR = 0.93, 95 % CI 0.80–1.10, P = 0.41; and GlnGln vs. ArgArg/ArgGln: fixed-effect OR = 0.85, 95 % CI 0.63–1.13, P = 0.26). Our meta-analysis of the available data did not find an obvious effect of XRCC1 Arg399Gln polymorphism on hepatitis-related hepatocellular carcinoma. More well-designed studies with large sample are needed to further verify the effect.


XRCC1 Hepatitis Hepatocellular carcinoma 


  1. 1.
    El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62:10–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Ganem D, Prince AM. Hepatitis B virus infection—natural history and clinical consequences. N Engl J Med. 2004;350:1118–29.CrossRefPubMedGoogle Scholar
  4. 4.
    Webster DP, Klenerman P, Collier J, Jeffery KJ. Development of novel treatments for hepatitis C. Lancet Infect Dis. 2009;9:108–17.CrossRefPubMedGoogle Scholar
  5. 5.
    Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87.CrossRefPubMedGoogle Scholar
  6. 6.
    Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Ginsberg G, Angle K, Guyton K, Sonawane B. Polymorphism in the DNA repair enzyme XRCC1: utility of current database and implications for human health risk assessment. Mutat Res. 2011;727:1–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Xue H, Ni P, Lin B, Xu H, Huang G. X-ray repair cross-complementing group 1 (XRCC1) genetic polymorphisms and gastric cancer risk: a huge review and meta-analysis. Am J Epidemiol. 2011;173:363–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Qian B, Zhang H, Zhang L, Zhou X, Yu H, Chen K. Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer. 2011;73:138–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen CC, Yang SY, Liu CJ, Lin CL, Liaw YF, Lin SM, et al. Association of cytokine and DNA repair gene polymorphisms with hepatitis B-related hepatocellular carcinoma. Int J Epidemiol. 2005;34:1310–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Kiran M, Saxena R, Chawla YK, Kaur J. Polymorphism of DNA repair gene XRCC1 and hepatitis-related hepatocellular carcinoma risk in Indian population. Mol Cell Biochem. 2009;327:7–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Jung SW, Park NH, Shin JW, Park BR, Kim CJ, Lee JE, et al. Polymorphisms of DNA repair genes in Korean hepatocellular carcinoma patients with chronic hepatitis B: possible implications on survival. J Hepatol. 2012;57:621–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Bose S, Tripathi DM, Sukriti, Sakhuja P, Kazim SN, Sarin SK. Genetic polymorphisms of CYP2E1 and DNA repair genes HOGG1 and XRCC1: association with hepatitis B related advanced liver disease and cancer. Gene. 2013;519:231–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Gulnaz A, Sayyed AH, Amin F, Khan A, Aslam MA, Shaikh RS, et al. Association of XRCC1, XRCC3, and XPD genetic polymorphism with an increased risk of hepatocellular carcinoma because of the hepatitis B and C virus. Eur J Gastroenterol Hepatol. 2013;25:166–79.CrossRefPubMedGoogle Scholar
  15. 15.
    Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRefGoogle Scholar
  16. 16.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMedGoogle Scholar
  17. 17.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMedGoogle Scholar
  18. 18.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMedGoogle Scholar
  19. 19.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Han Y, Yang J, Zheng S, Wu Y. Study on the association of human XRCC1-399 single nucleotide polymorphism and primary hepatocytic carcinoma [article in Chinese]. Chin Hepatol. 2004;9:235–7.Google Scholar
  21. 21.
    Ren Y, Wang D, Li Z. Study on the relationship between gene XRCC1 codon 399 single nucleotide polymorphisms and primary hepatic carcinoma in Han nationality [article in Chinese]. Chin J Clin Hepatol. 2008;24:361–4.Google Scholar
  22. 22.
    Liu F, Li B, Wei Y, Yan L, Wen T, Zhao J, et al. XRCC1 genetic polymorphism Arg399Gln and hepatocellular carcinoma risk: a meta-analysis. Liver Int. 2011;31:802–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA. 2008;299:2423–36.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol. 2011;12:399–408.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Dan Wu
    • 1
  • Honglei Jiang
    • 2
  • Qiuhong Gu
    • 1
  • Dan Zhang
    • 1
  • Zhiwei Li
    • 1
  1. 1.Infectious Disease DepartmentThe Shengjing Hospital of China Medical UniversityShenyangChina
  2. 2.Department of Hepatobiliary SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangChina

Personalised recommendations