Skip to main content

Advertisement

Log in

Inhibition of mTOR and HIF pathways diminishes chondro-osteogenesis and cell proliferation in chondroblastoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Chondroblastoma (CBL) is a benign bone tumor occurring mostly in teenagers. Despite this, CBL can recur and metastasize after curettage, which may impede normal epiphysis. In search of a novel targeted therapy for CBL, we aimed at BMP-2, a factor critical for chondro-osteogenesis and chondrocyte proliferation. Two pathways upstream of BMP-2, the mTOR and HIF, were targeted with rapamycin (Rapa) and FM19G11 (FM), respectively. Using immunohistochemistry, we found BMP-2 was highly expressed in CBL tissues. CBL cells explanted and confirmed with higher BMP-2 level than normal cartilage. Protumorigenic effect of Rapa and FM on CBL cells were transduced via BMP-2. Combination of Rapa and FM conferred stronger inhibition of cell proliferation than either monotherapy and inhibited levels of chondro-osteogenic markers (Sox9, aggrecan, and type II collagen). To minimize the adverse effect of Rapa, we performed screening in essential amino acids and found leucine deprivation-sensitized CBL cells to Rapa. Combination treatment of low dose Rapa, FM, and leucine deprivation conferred compatible inhibitory effects on CBL cell proliferation, chondro-osteogenic potential, and tumorigenic capacity. We conclude that targeting BMP-2 using mTOR/HIF inhibition could potently curb the disease. Addition of low-leucine diet could lower the dose of rapamycin in chase for less toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schajowicz F, Gallardo H. Epiphysial chondroblastoma of bone. A clinico-pathological study of sixty-nine cases. J Bone Joint Surg Br. 1970;52:205–26.

    CAS  PubMed  Google Scholar 

  2. Dahlin DC, Ivins JC. Benign chondroblastoma. A study of 125 cases. Cancer. 1972;30:401–13.

    Article  CAS  PubMed  Google Scholar 

  3. Jaffe HL, Lichtenstein L. Chondromyxoid fibroma of bone; a distinctive benign tumor likely to be mistaken especially for chondrosarcoma. Arch Pathol (Chicago). 1948;45:541–51.

    CAS  Google Scholar 

  4. Lin PP, Thenappan A, Deavers MT, Lewis VO, Yasko AW. Treatment and prognosis of chondroblastoma. Clin Orthop Relat Res. 2005;438:103–9.

    Article  PubMed  Google Scholar 

  5. Ramappa AJ, Lee FY, Tang P, Carlson JR, Gebhardt MC, Mankin HJ. Chondroblastoma of bone. J Bone Joint Surg Am. 2000;82-A:1140–5.

    CAS  PubMed  Google Scholar 

  6. Springfield DS, Capanna R, Gherlinzoni F, Picci P, Campanacci M. Chondroblastoma. A review of seventy cases. J Bone Joint Surg Am. 1985;67:748–55.

    CAS  PubMed  Google Scholar 

  7. Ilaslan H, Sundaram M, Unni KK. Vertebral chondroblastoma. Skeletal Radiol. 2003;32:66–71.

    Article  PubMed  Google Scholar 

  8. Jaffe HL, Lichtenstein L. Benign chondroblastoma of bone: a reinterpretation of the so-called calcifying or chondromatous giant cell tumor. Am J Pathol. 1942;18:969–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Sailhan F, Chotel F, Parot R, SOFOP. Chondroblastoma of bone in a pediatric population. J Bone Joint Surg Am. 2009;91:2159–68.

    Article  PubMed  Google Scholar 

  10. Maheshwari AV, Jelinek JS, Song AJ, Nelson KJ, Murphey MD, Henshaw RM. Metaphyseal and diaphyseal chondroblastomas. Skeletal Radiol. 2011;40:1563–73.

    Article  PubMed  Google Scholar 

  11. Yang ZJ, Liu FX, Yang YS, Yang X, Zhu GX. Expression of bone-morphogenetic protein 2 and tumor necrosis factor α correlates with bone metastases in bladder urothelial carcinoma. Ann Diagn Pathol. 2013;17:51–3.

    Article  PubMed  Google Scholar 

  12. Yang X, Wang YP, Liu FX, Zeng K, Qian MQ, Chen G, et al. Increased invasiveness of osteosarcoma mesenchymal stem cells induced by bone-morphogenetic protein-2. In Vitro Cell Dev Biol Anim. 2013;49:270–8.

    Article  CAS  PubMed  Google Scholar 

  13. Robinson D, Lewis MM, Nevo Z, Kenan S, Einhorn TA. The radiographic stage of giant cell tumor related to stromal cells’ proliferation. Tissue cultures in 13 cases. Acta Orthop Scand. 1997;68:294–7.

    Article  CAS  PubMed  Google Scholar 

  14. Feng C, Guan M, Ding Q, Zhang Y, Jiang H, Wen H, et al. Expression of pigment epithelium-derived factor in bladder tumour is correlated with interleukin-8 yet not with interleukin-1α. J Huazhong Univ Sci Technolog Med Sci. 2011;31:21–5.

    Article  CAS  PubMed  Google Scholar 

  15. Guo T, Gu C, Feng C, Ding Q, Xu C, Li B. Endoureterotomy is not a sufficient treatment for intrinsic ureteral endometriosis. Videosurgery Miniinv. 2013. doi:10.5114/wiitm.2011.33614.

    Google Scholar 

  16. Wen H, Feng CC, Ding GX, Meng DL, Ding Q, Fang ZJ, et al. Med19 promotes bone metastasis and invasiveness of bladder urothelial carcinoma via bone morphogenetic protein 2. Ann Diagn Pathol. 2012. doi:10.1016/j.anndiagpath.2012.11.004.

    PubMed  Google Scholar 

  17. Feng CC, Wang PH, Ding Q, Guan M, Zhang YF, Jiang HW, et al. Expression of pigment epithelium-derived factor and tumor necrosis factor-α is correlated in bladder tumor and is related to tumor angiogenesis. Urol Oncol. 2013;31:241–6.

    Article  PubMed  Google Scholar 

  18. Feng CC, Ding Q, Zhang YF, Jiang HW, Wen H, Wang PH, et al. Pigment epithelium-derived factor expression is down-regulated in bladder tumors and correlates with vascular endothelial growth factor and matrix metalloproteinase-9. Int Urol Nephrol. 2011;43:383–90.

    Article  CAS  PubMed  Google Scholar 

  19. Feng CC, Wang PH, Guan M, Jiang HW, Wen H, Ding Q, et al. Urinary BLCA-4 is highly specific for detection of bladder cancer in Chinese Han population and is related to tumour invasiveness. Folia Biol (Praha). 2011;57:242–7.

    CAS  Google Scholar 

  20. Karsenty G. The complexities of skeletal biology. Nature. 2003;423:316–8.

    Article  CAS  PubMed  Google Scholar 

  21. Martin KA. Blenis J, Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res. 2002;86:1–39.

    Article  CAS  PubMed  Google Scholar 

  22. Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol. 2005;17:158–66.

    Article  CAS  PubMed  Google Scholar 

  23. Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr. 2006;136:227S–31.

    CAS  PubMed  Google Scholar 

  24. Drummond MJ, Rasmussen BB. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care. 2008;11:222–6.

    Article  CAS  PubMed  Google Scholar 

  25. Phornphutkul C, Wu KY, Auyeung V, Chen Q, Gruppuso PA. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn. 2008;237:702–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Salim A, Nacamuli RP, Morgan EF, Giaccia AJ, Longaker MT. Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem. 2004;279:40007–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the Wuxi Health Bureau, no.YGZX1106.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-xing Zhu.

Additional information

Xiao Yang and Zheng-jie Yang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Yang, Zj., Liu, Fx. et al. Inhibition of mTOR and HIF pathways diminishes chondro-osteogenesis and cell proliferation in chondroblastoma. Tumor Biol. 34, 3111–3119 (2013). https://doi.org/10.1007/s13277-013-0879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0879-8

Keywords

Navigation