Tumor Biology

, Volume 34, Issue 5, pp 3015–3026 | Cite as

Chromosomal imbalances exclusively detected in invasive front area are associated with poor outcome in laryngeal carcinomas from different anatomical sites

  • Eliane Papa Ambrosio
  • Cássia Gisele Terrassani Silveira
  • Sandra Aparecida Drigo
  • Vivian de Souza Sacomano
  • Miriam Coelho Molck
  • Rafael Malagoli Rocha
  • Maria Aparecida Custódio Domingues
  • Fernando Augusto Soares
  • Luiz Paulo Kowalski
  • Silvia Regina Rogatto
Research Article


Laryngeal squamous cell carcinoma (LSCC) is a malignant neoplasm exhibiting aggressive phenotype, high recurrence rate, and risk of developing second primary tumors. Current evidence suggests that cells in the invasive front of carcinomas have different molecular profiles compared to those in superficial areas. This study aimed to identify candidate genes in the invasive front and superficial cells from laryngeal carcinomas that would be useful as molecular markers. Invasive front and tumor surface cells of 32 LSCC were evaluated by high-resolution comparative genomic hybridization. Both CCND1 copy number gains and cyclin D1 protein expression were evaluated to confirm gains of 11q13.3. Losses of 3q26.2-q29 and 18q23 were confirmed by loss of heterozygosity analysis. The most frequent chromosomal alterations observed only in invasive front cells involved gains of 1p, 4q, and 9p and losses of 3p, 11p, 12p, 13q, 17q, 18p, 19q, 20q, 21q, and Xp. Gains of 11q13 were detected in both components from glottis and supraglottis but only in invasive front cells from transglottic tumors. Fluorescence in situ hybridization confirmed gains of CCND1/CPE11 in a subset of cases. In supraglottic tumors, cyclin D1 positivity was associated with distant metastasis (P = 0.0018) and with decreased disease-free survival (P = 0.042). Loss of heterozygosity at 3q26.2 and 18q23 were associated with lymph node involvement (P = 0.055) and worsened prognosis, respectively. In conclusion, this study revealed regions that could be targeted in the search for molecular markers in LSCC. Cyclin D1 may be useful as a prognostic marker in supraglottic tumors.


Laryngeal carcinomas Comparative genomic hybridization Invasive front Molecular markers Chromosomal imbalances 



The authors would like to thank Francine Blumental de Abreu and Hellen Kuasne for their technical assistance. The authors also express their gratitude to Dr Fabiola Encinas Rosa and Dr Claudia A Rainho for their many helpful suggestions throughout the manuscript's preparation. This work was supported by grants from the National Institute of Science and Technology in Oncogenomics (INCITO—Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP 2008/57887-9 and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq 573589/08-9) and FAPESP 07/52265-7.

Conflicts of interest


Supplementary material

13277_2013_866_MOESM1_ESM.docx (23 kb)
Online Resource 1 Microsatellite markers: location and primer sets. (DOCX 23.0 kb)
13277_2013_866_MOESM2_ESM.doc (44 kb)
Online Resource 2 Differential chromosomal gains and losses in invasive front and surface cells detected by HR-CGH. (DOC 44.5 kb)
13277_2013_866_MOESM3_ESM.doc (162 kb)
Online Resource 3 Comparison between cyclin D1 expression in unpaired LSCC samples and clinical and histopathological data. (DOC 162 kb)


  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Almadori G, Bussu F, Cadoni G, Galli J, Paludetti G, Maurizi M. Molecular markers in laryngeal squamous cell carcinoma: towards an integrated clinicobiological approach. Eur J Cancer. 2005;41:683–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Ries LAG, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ, et al. SEER Cancer Statistics Review, 1975–2004. National Cancer Institute (Bethesda, MD)., based on November 2006 SEER data submission, posted to the SEER web site, 2007. Accessed 5 June 2013.
  4. 4.
    Gao X, Fisher SG, Mohideen N, Emami B. Second primary cancers in patients with laryngeal cancer: a population-based study. Int J Radiat Oncol Biol Phys. 2003;56:427–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Broders AC. Carcinoma of the mouth: types and degrees of malignancy. Am J Roentgenol Radium Ther Nucl Med. 1927;17:90–3.Google Scholar
  6. 6.
    Kurokawa H, Yamashita Y, Murata T, Yoshikawa T, Tokudome S, Miura K, et al. Histological grading of malignancy correlates with regional lymph node metastasis and survival of patients with oral squamous cell carcinoma. Fukuoka Igaku Zasshi. 1998;89:225–31.PubMedGoogle Scholar
  7. 7.
    Sawair FA, Irwin CR, Gordon DJ, Leonard AG, Stephenson M, Napier SS. Invasive front grading: reliability and usefulness in the management of oral squamous cell carcinoma. J Oral Pathol Med. 2003;32:1–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Bryne M, Koppang HS, Lilleng R, Kjaerheim A. Malignancy grading of the deep invasive margins of oral squamous cell carcinomas has high prognostic value. J Pathol. 1992;166:375–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Bànkfalvi A, Piffkò J. Prognostic and predictive factors in oral cancer: the role of the invasive tumour front. J Oral Pathol Med. 2000;29:291–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Graflund M, Sorbe B, Bryne M, Karlsson M. The prognostic value of a histologic grading system, DNA profile, and MIB-1 expression in early stages of cervical squamous cell carcinomas. Int J Gynecol Cancer. 2002;12:149–57.CrossRefPubMedGoogle Scholar
  11. 11.
    Noguchi M, Kinjyo H, Kohama GI, Nakamori K. Invasive front in oral squamous cell carcinoma: image and flow cytometric analysis with clinicopathologic correlation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:682–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Po W, Yuen A, Lam KY, Lam LK, Ho CM, Wong A, et al. Prognostic factors of clinically stage I and II oral tongue carcinoma—a comparative study of stage, thickness, shape, growth pattern, invasive front malignancy grading, Martinez-Gimeno score, and pathologic features. Head Neck. 2002;24:513–20.CrossRefGoogle Scholar
  13. 13.
    Kurokawa H, Zhang M, Matsumoto S, Yamashita Y, Tanaka T, Tomoyose T, et al. The relationship of the histologic grade at the deep invasive front and the expression of Ki-67 antigen and p53 protein in oral squamous cell carcinoma. J Oral Pathol Med. 2005;34:602–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Bryne M, Jenssen N, Boysen M. Histological grading in the deep invasive front of T1 and T2 glottic squamous cell carcinomas has high prognostic value. Virchows Arch. 1995;427:277–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Ambrosio EP, Rosa FE, Domingues MA, Villacis RA, Coudry RD, Tagliarini JV, et al. Cortactin is associated with perineural invasion in the deep front area of laryngeal carcinomas. Hum Pathol. 2011;42:1221–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Mitelman F, Johansson B, Mertens F. Mitelman database of chromosome aberrations and gene fusions in cancer. 2013. Accessed 5 June 2013
  18. 18.
    Kujawski M, Rydzanicz M, Sarlomo-Rikala M, Gabriel A, Szyfter K. Chromosome alterations reflect clonal evolution in squamous cell carcinoma of the larynx. Med Sci Monit. 2002;8:279–82.Google Scholar
  19. 19.
    Schwerer MJ, Sailer A, Kraft K, Baczako K, Maier H. Expression of retinoblastoma gene product in respiratory epithelium and sinonasal neoplasms: relationship with p16 and cyclin D1 expression. Histol Histopathol. 2003;18:143–51.PubMedGoogle Scholar
  20. 20.
    Schlade-Bartusiak K, Stembalska A, Ramsey D. Significant involvement of chromosome 13q deletions in progression of larynx cancer, detected by comparative genomic hybridization. J Appl Genet. 2005;46:407–13.PubMedGoogle Scholar
  21. 21.
    Stembalska A, Blin N, Ramsey D, Sasiadek MM. Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Rep. 2006;16:417–21.PubMedGoogle Scholar
  22. 22.
    Keser I, Toraman AD, Ozbilim G, Guney K, Luleci G. Gains and losses of chromosome in laryngeal squamous cell carcinoma using comparative genomic hybridization. Yonsei Med J. 2008. doi: 10.3349/ymj.2008.49.6.949.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Tremmel SC, Götte K, Popp S, Weber S, Hörmann K, Bartram CR, et al. Intratumoral genomic heterogeneity in advanced head and neck cancer detected by comparative genomic hybridization. Cancer Genet Cytogenet. 2003;144:165–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Juhász A, Balázs M, Sziklay I, Rákosy Z, Treszl A, Répássy G, et al. Chromosomal imbalances in laryngeal and hypopharyngeal cancers detected by comparative genomic hybridization. Cytometry. 2005;67A:151–60.CrossRefGoogle Scholar
  25. 25.
    Hermsen M, Guervos AM, Meijer G, van Diest P, Suarez Nieto C, Marcos CA, et al. Chromosomal changes in relation to clinical outcome in larynx and pharynx squamous cell carcinoma. Cell Oncol. 2005;27:191–8.PubMedGoogle Scholar
  26. 26.
    Patmore HS, Ashman JNE, Stafford ND, Berrieman HK, MacDonald A, Greenman J, et al. Genetic analysis of head and neck squamous cell carcinoma using comparative genomic hybridization identifies specific aberrations associated with laryngeal origin. Cancer Lett. 2007;258:55–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Stoecklein NH, Erbersdobler A, Schmidt-Kittler O, Diebold J, Schardt JA, Izbicki JR, et al. SCOMP is superior to degenerated oligonucleotide primed-polymerase chain reaction for global amplification of minute amounts of DNA from microdissected archival tissue samples. Am J Pathol. 2002;161:43–51.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Ojopi EP, Rogatto SR, Caldeira JR, Barbiéri-Neto J, Squire JA. Comparative genomic hybridization detects novel amplifications in fibroadenomas of the breast. Gene Chromosomes Cancer. 2001;30:25–31.CrossRefGoogle Scholar
  29. 29.
    Kirchhoff M, Gerdes T, Rose H, Maahr J, Ottesen AM, Lundsteen C. Detection of chromosomal gains and losses in comparative genomic hybridization analysis based on standard reference intervals. Cytometry. 1998;31:163–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Shaffer LG, Slovak ML, Campbell LJ. ISCN. International System of Human Cytogenetic Nomenclature. Basel: Krager; 2009.Google Scholar
  31. 31.
    Cawkwell L, Bell SM, Lewis FA, Dixon MF, Taylor GR, Quirke P. Rapid detection of allele loss in colorectal tumours using microsatellites and fluorescent DNA technology. Br J Cancer. 1993;67:1262–7.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Bérgamo NA, Rogatto SR, Poli-Frederico RC, Reis PP, Kowalski LP, Zielenska M, et al. Comparative genomic hybridization analysis detects frequent over-representation of DNA sequences at 3q, 7p, and 8q in head and neck carcinomas. Cancer Genet Cytogenet. 2000;119:48–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Bauer VL, Braselmann H, Henke M, Mattern D, Walch A, Unger K, et al. Chromosomal changes characterize head and neck cancer with poor prognosis. J Mol Med (Berl). 2008. doi: 10.1007/s00109-008-0397-0.Google Scholar
  34. 34.
    Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44:2259–65.PubMedGoogle Scholar
  35. 35.
    Aubele M, Mattis A, Zitzelsberger H, Walch A, Kremer M, Hutzler P, et al. Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization. Cancer Genet Cytogenet. 1999;110:94–102.CrossRefPubMedGoogle Scholar
  36. 36.
    Andersen CL, Wiuf C, Kruhoffer M, Korsgaard M, Laurberg S, Orntoft TF. Frequent occurrence of uniparental disomy in colorectal cancer. Carcinogenesis. 2007;28:38–48.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang K, Li J, Li S, Bolund L, Wiuf C. Estimation of tumor heterogeneity using CGH array data. BMC Informatics. 2009. doi: 10.1186/1471-2105-10-12.Google Scholar
  38. 38.
    Mitra RS, Zhang Z, Henson BS, Kurnit DM, Carey TE, D'Silva NJ. Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 2003;22:6243–56.CrossRefPubMedGoogle Scholar
  39. 39.
    Ashazila MJ, Kannan TP, Venkatesh RN, Hoh BP. Microsatellite instability and loss of heterozygosity in oral squamous cell carcinoma in Malaysian population. Oral Oncol. 2011;47:358–64.CrossRefPubMedGoogle Scholar
  40. 40.
    Tsui IF, Rosin MP, Zhang L, Ng RT, Lam WL. Multiple aberrations of chromosome 3p detected in oral premalignant lesions. Cancer Prev Res. 2008. doi: 10.1158/1940-6207.CAPR-08-0123.Google Scholar
  41. 41.
    Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, et al. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene. 2005;356:109–17.CrossRefPubMedGoogle Scholar
  42. 42.
    Ghosh A, Ghosh S, Maiti GP, Sabbir MG, Zabarovsky ER, Roy A, et al. Frequent alterations of the candidate genes hMLH1, ITGA9 and RBSP3 in early dysplastic lesions of head and neck: clinical and prognostic significance. Cancer Sci. 2010;101:1511–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Kowalski LP, Franco EL, de Andrade SJ, Oliveira BV, Pontes PL. Prognostic factors in laryngeal cancer patients submitted to surgical treatment. J Surg Oncol. 1991;48:87–95.CrossRefPubMedGoogle Scholar
  44. 44.
    Danic D, Maruic M, Uzarevic B, Milicic D. Prognostic factors in squamous cell carcinoma of the larynx. J Otorhinolaryngol Relat Spec. 2000;62:143–8.CrossRefGoogle Scholar
  45. 45.
    Vlachtsis K, Nikolaou A, Markou K, Fountzilas G, Daniilidis I. Clinical and molecular prognostic factors in operable laryngeal cancer. Eur Arch Otorhinolaryngol. 2005;262:890–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Rodrigo JP, García-Carracedo D, García LA, Menéndez S, Allonca E, González MV, et al. Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas. J Pathol. 2009;217:516–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Izzo JG, Papadimitracopoulou VA, Li XQ, Ibarguen H, Lee JS, El-Naggar A, et al. Dysregulated cyclin D1 expression early in head and neck tumorigenesis: In vitro evidence for an association with subsequent gene amplification. Oncogene. 1998;17:2313–22.CrossRefPubMedGoogle Scholar
  48. 48.
    Freier K, Hofele C, Knoepfle K, Gross M, Devens F, Dyckhoff G, et al. Cytogenetic characterization of head and neck squamous cell carcinoma cell lines as model systems for the functional analyses of tumor-associated genes. J Oral Pathol Med. 2010;39(5):382–9.PubMedGoogle Scholar
  49. 49.
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.CrossRefPubMedGoogle Scholar
  50. 50.
    Bellacosa A, Almadori G, Cavallo S, Cadoni G, Galli J, Ferrandina G, et al. Cyclin D1 gene amplification in human laryngeal squamous cell carcinomas: prognostic significance and clinical implications. Clin Cancer Res. 1996;2(1):175–80.PubMedGoogle Scholar
  51. 51.
    Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, et al. Classical and novel prognostic markers for breast cancer and their clinical significance. Clin Med Insights Oncol. 2010;4:15–34.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Ishidate T, Matsumine A, Toyoshima K, Akiyama T. The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene. 2000;19:365–72.CrossRefPubMedGoogle Scholar
  53. 53.
    Pearlstein RP, Benninger MS, Rybicki BA, Torres F, DL Vd. Preliminary study of 18q loss of heterozygosity and poor survival in patients with stage III head neck cancer. On-line Interact J Otolaryngol. 1997;II:FA:1–6.Google Scholar
  54. 54.
    Pearlstein R, Benninger M, Carey T. Loss of 18q predicts poor survival of patients with squamous cell carcinoma of the head and neck. Genes Chromosomes Cancer. 1998;21:333–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Odell EW, Jani P, Sherrif M, Ahluwalia SM, Hibbert J, Levison DA, et al. The prognostic value of individual histologic grading parameters in small lingual squamous cell carcinoma. The importance of the pattern of invasion. Cancer. 1994;74:789–94.CrossRefPubMedGoogle Scholar
  56. 56.
    Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 2000;60:5887–94.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Eliane Papa Ambrosio
    • 1
    • 2
  • Cássia Gisele Terrassani Silveira
    • 1
    • 2
  • Sandra Aparecida Drigo
    • 2
    • 3
  • Vivian de Souza Sacomano
    • 1
  • Miriam Coelho Molck
    • 1
    • 2
  • Rafael Malagoli Rocha
    • 5
  • Maria Aparecida Custódio Domingues
    • 4
  • Fernando Augusto Soares
    • 5
  • Luiz Paulo Kowalski
    • 6
  • Silvia Regina Rogatto
    • 2
    • 7
  1. 1.Institute of BiosciencesUNESP-São Paulo State UniversityBotucatuBrazil
  2. 2.International Research Center - CIPE, A.C. Camargo Cancer CenterLiberdade ­ São PauloBrazil
  3. 3.Department of Urology, Faculty of MedicineUNESP-São Paulo State UniversityBotucatuBrazil
  4. 4.Department of PathologyUNESP-São Paulo State UniversityBotucatuBrazil
  5. 5.Department of PathologyAC Camargo HospitalSão PauloBrazil
  6. 6.Department of Head and Neck Surgery and Otorhinolaryngology and National Institute of Oncogenomics (INCITO)A.C. Camargo HospitalSão PauloBrazil
  7. 7.NeoGene Laboratory Fundação Antonio PrudenteHospital A.C. CamargoSão PauloBrazil

Personalised recommendations