Tumor Biology

, Volume 34, Issue 5, pp 2995–3002 | Cite as

Overexpression of response gene to complement 32 (RGC32) promotes cell invasion and induces epithelial–mesenchymal transition in lung cancer cells via the NF-κB signaling pathway

  • Qinying Sun
  • Xiaopeng Yao
  • Yunye Ning
  • Wei Zhang
  • Guowu Zhou
  • Yuchao Dong
Research Article


Response gene to complement 32 (RGC32) is a novel cellular protein that has been reported to be expressed aberrantly in multiple types of human tumors. However, the role of RGC32 in cancer is still controversial, and the molecular mechanisms by which RGC32 contributes to the development of cancer remain largely unknown. In the present study, we constructed a recombinant expression vector pCDNA3.1-RGC32 and transfected it into human lung cancer A549 cells. Stable transformanted cells were identified by real-time PCR and Western blot analysis. Functional analysis showed that forced overexpression of RGC32 increased invasive and migration capacities of lung cancer cells in vitro, and induced the acquisition of epithelial–mesenchymal transition (EMT) phenotype, as demonstrated by the spindle-like morphology, downregulation of E-cadherin, and upregulation of Vimentin, Fibronectin, Snail and Slug. Also, overexpression of RGC32 increased expression and activities of matrix metalloproteinase (MMP)-2 and MMP-9 in A549 cells. Furthermore, the downregulation of E-cadherin induced by RGC32 was remarkably attenuated by nuclear factor-κB (NF-κB) inhibitor BAY 11-7028 and small interfering RNA targeting NF-κB p65, suggesting a role of the NF-κB signaling pathway in RGC32-induced EMT. Taken together, our data suggest that RGC32 promotes cell migration and invasion and induces EMT in lung cancer cells via the NF-κB signaling pathway.


Response gene to complement 32 Lung cancer Invasion Migration Epithelial–mesenchymal transition Nuclear factor-κB 


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  2. 2.
    Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50. doi: 10.1200/JCO.2005.05.2308.CrossRefPubMedGoogle Scholar
  3. 3.
    Ulahannan SV, Brahmer JR. Antiangiogenic agents in combination with chemotherapy in patients with advanced non-small cell lung cancer. Cancer Invest. 2011;29(4):325–37. doi: 10.3109/07357907.2011.554476.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. doi: 10.1016/j.cell.2009.11.007.CrossRefPubMedGoogle Scholar
  5. 5.
    Zeisberg M, Neilson EG. Biomarkers for epithelial–mesenchymal transitions. J Clin Invest. 2009;119(6):1429–37. doi: 10.1172/JCI36183.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95. doi: 10.1016/j.cell.2006.11.001.CrossRefPubMedGoogle Scholar
  7. 7.
    Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54. doi: 10.1038/nrc822.CrossRefPubMedGoogle Scholar
  8. 8.
    Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273(41):26977–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V, et al. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002;277(1):502–8. doi: 10.1074/jbc.M109354200.CrossRefPubMedGoogle Scholar
  10. 10.
    Fosbrink M, Cudrici C, Niculescu F, Badea TC, David S, Shamsuddin A, et al. Overexpression of RGC-32 in colon cancer and other tumors. Exp Mol Pathol. 2005;78(2):116–22. doi: 10.1016/j.yexmp.2004.11.001.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim DS, Lee JY, Lee SM, Choi JE, Cho S, Park JY. Promoter methylation of the RGC32 gene in nonsmall cell lung cancer. Cancer. 2011;117(3):590–6. doi: 10.1002/cncr.25451.CrossRefPubMedGoogle Scholar
  12. 12.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262.CrossRefPubMedGoogle Scholar
  13. 13.
    Lorenzl S, Albers DS, Narr S, Chirichigno J, Beal MF. Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol. 2002;178(1):13–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol. 2003;10(2):136–41.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172(7):973–81. doi: 10.1083/jcb.200601018.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Vlaicu SI, Cudrici C, Ito T, Fosbrink M, Tegla CA, Rus V, et al. Role of response gene to complement 32 in diseases. Arch Immunol Ther Exp (Warsz). 2008;56(2):115–22. doi: 10.1007/s00005-008-0016-3.CrossRefGoogle Scholar
  17. 17.
    Zhu L, Qin H, Li PY, Xu SN, Pang HF, Zhao HZ, et al. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial–mesenchymal transition in human pancreatic cancer cell line BxPC-3. J Exp Clin Cancer Res. 2012;31:29. doi: 10.1186/1756-9966-31-29.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 2005;65(14):5991–5. doi: 10.1158/0008-5472.CAN-05-0616. discussion 5.CrossRefPubMedGoogle Scholar
  19. 19.
    Cardiff RD. Epithelial to mesenchymal transition tumors: fallacious or snail’s pace? Clin Cancer Res. 2005;11(24 Pt 1):8534–7. doi: 10.1158/1078-0432.CCR-05-2250.CrossRefPubMedGoogle Scholar
  20. 20.
    Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY. RGC-32 mediates transforming growth factor-beta-induced epithelial–mesenchymal transition in human renal proximal tubular cells. J Biol Chem. 2009;284(14):9426–32. doi: 10.1074/jbc.M900039200.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Guo X, Jose PA, Chen SY. Response gene to complement 32 interacts with Smad3 to promote epithelial–mesenchymal transition of human renal tubular cells. Am J Physiol Cell Physiol. 2011;300(6):C1415–21. doi: 10.1152/ajpcell.00204.2010.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Qinying Sun
    • 1
  • Xiaopeng Yao
    • 1
  • Yunye Ning
    • 1
  • Wei Zhang
    • 1
  • Guowu Zhou
    • 1
  • Yuchao Dong
    • 1
  1. 1.Department of Respiratory Medicine, Changhai HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China

Personalised recommendations