Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol. 2005;19:753–81.
Article
PubMed
Google Scholar
Plockinger U, Rindi G, Arnold R, et al. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology. 2004;80:394–424.
CAS
Article
PubMed
Google Scholar
Oberg K. Pancreatic endocrine tumors. Semin Oncol. 2010;37:594–618.
Article
PubMed
Google Scholar
Clawson GA. From devils to jobs: tracking neuroendocrine tumors. Transl Cancer Res. 2013;2:3–5.
Google Scholar
Ito T, Tanaka M, Sasano H, et al. Preliminary results of a Japanese nationwide survey of neuroendocrine gastrointestinal tumors. J Gastroenterol. 2007;42:497–500.
Article
PubMed
Google Scholar
Lo RC, Ng IO. Hepatocellular tumors: immunohistochemical analyses for classification and prognostication. Chin J Cancer Res. 2011;23:245–53.
PubMed Central
CAS
Article
PubMed
Google Scholar
Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135:1469–92.
PubMed Central
CAS
Article
PubMed
Google Scholar
Yao JC, Hassan M, Han A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.
Article
PubMed
Google Scholar
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84.
CAS
Article
PubMed
Google Scholar
Nave BT, Ouwens M, Withers DJ, et al. Mammalian target of rapamycin is a direct target of protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344:427–31.
PubMed Central
CAS
Article
PubMed
Google Scholar
Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27:2278–87.
PubMed Central
CAS
Article
PubMed
Google Scholar
Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5:671–88.
CAS
Article
PubMed
Google Scholar
Peterson RT, Beal PA, Comb MJ, et al. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 2000;275:7416–23.
CAS
Article
PubMed
Google Scholar
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.
PubMed Central
CAS
Article
PubMed
Google Scholar
Yao JC. Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab. 2007;21:163–72.
CAS
Article
PubMed
Google Scholar
von Wichert G, Jehle PM, Hoeflich A, et al. Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res. 2000;60:4573–81.
Google Scholar
Fang Y, Vilella-Bach M, Bachmann R, et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001;294:1942–5.
CAS
Article
PubMed
Google Scholar
Albanell J, Dalmases A, Rovira A, et al. MTOR signaling in human cancer. Clin Transl Oncol. 2007;9:484–93.
CAS
Article
PubMed
Google Scholar
Dobashi Y, Watanabe Y, Miwa C, et al. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol. 2011;4:476–95.
PubMed Central
CAS
PubMed
Google Scholar
Bjormnsti MA, Houghton PJ. The TOR pathway: a target for cancer chemotherapy. Nat Rev Cancer. 2004;4:335–8.
Article
Google Scholar
Mamane Y, Petroulakis E, LeBacquer O, et al. mTOR, translation initiation and cancer. Oncogene. 2006;25:6416–22.
CAS
Article
PubMed
Google Scholar
Petroulakis E, Mamane Y, Le Bacquer O, et al. mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer. 2006;94:195–9.
PubMed Central
CAS
Article
PubMed
Google Scholar
Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22:183–98.
CAS
Article
PubMed
Google Scholar
Chung DC, Brown SB, Graeme-Cook F, et al. Localization of putative tumor suppressor loci by genome-wide allelotyping in human pancreatic endocrine tumors. Cancer Res. 1998;58:3706–11.
CAS
PubMed
Google Scholar
Rigaud G, Missiaglia E, Moore PS, et al. High resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res. 2001;61:285–92.
CAS
PubMed
Google Scholar
Perren A, Komminoth P, Saremaslani P, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol. 2000;157:1097–103.
PubMed Central
CAS
Article
PubMed
Google Scholar
Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT–mTOR pathway. J Clin Oncol. 2010;28:245–55.
PubMed Central
CAS
Article
PubMed
Google Scholar
Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23.
PubMed Central
CAS
Article
PubMed
Google Scholar
Crippa S, Partelli S, Boninsegna L, et al. Implications of the new histological classification (WHO 2010) for pancreatic neuroendocrine neoplasms. Ann Oncol. 2012;23:1928.
CAS
Article
PubMed
Google Scholar
Rindi G, Klöppel G, Alhman H, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449:395–401.
PubMed Central
CAS
Article
PubMed
Google Scholar
Yao JC, Hoff PM. Molecular targeted therapy for neuroendocrine tumors. Hematol Oncol Clin North Am. 2007;1:575–81.
Article
Google Scholar
Noro R, Gemma A, Miyanaga A, et al. PTEN inactivation in lung cancer and the effect of its recovery on treatment with epidermal growth factor tyrosine kinase inhibitors. Int J Oncol. 2007;31:1157–63.
CAS
PubMed
Google Scholar
Sos ML, Koker M, Weir BA, et al. PTEN loss contributes to erlotinib resistance in EGFR mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69:3256–61.
PubMed Central
CAS
Article
PubMed
Google Scholar
Zhou CF, Ji J, Yuan F, et al. mTOR activation in well differentiated pancreatic neuroendocrine tumors: a retrospective study on 34 cases. Hepatogastroenterology. 2011;58:2140–3.
PubMed
Google Scholar
Chen M, Van Ness M, Guo Y, et al. Molecular pathology of pancreatic neuroendocrine tumors. J Gastrointest Oncol. 2012;3:182–8.
PubMed Central
PubMed
Google Scholar
Saeed A, Buell JF, Kandil E. Surgical treatment of liver metastases in patients with neuroendocrine tumors. Ann Transl Med. 2013;1:6.
PubMed Central
PubMed
Google Scholar
Shida T, Kishimoto T, Furuya M, et al. Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Cancer Chemother Pharmacol. 2010;65:889–93.
CAS
Article
PubMed
Google Scholar
Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378:2005–12.
CAS
Article
PubMed
Google Scholar
Susini C, Buscail L. Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol. 2006;17:1733–42.
CAS
Article
PubMed
Google Scholar
Strosberg JR, Cheema A, Weber JM, et al. Relapse-free survival in patients with nonmetastatic, surgically resected pancreatic neuroendocrine tumors: an analysis of the AJCC and ENETS staging classifications. Ann Surg. 2012;256:321–5.
Article
PubMed
Google Scholar