Tumor Biology

, Volume 34, Issue 5, pp 2691–2696 | Cite as

Cytogenetic characterization of an N-butyl-N-(4-hydroxybutyl) nitrosamine-induced mouse papillary urothelial carcinoma

  • Regina Arantes-Rodrigues
  • Rosário Pinto-Leite
  • Rui Gil da Costa
  • Aura Colaço
  • Carlos Lopes
  • Paula Oliveira
Research Article


Chemically-induced urinary bladder cancer in rodents has long been used as a reliable model to study the biopathology of urinary bladder neoplasia and to develop therapeutic strategies against human tumors. Knowledge of the genetic basis underlying carcinogenesis would greatly enhance usability and usefulness of this model for the purposes of comparative pathology. However, little is known about the cytogenetic characteristics of rodent urinary bladder tumors. Accordingly, pathological and negative control specimens were collected for cytogenetic evaluation, from an ongoing mouse urinary bladder N-butyl-N-(4-hydroxybutyl) nitrosamine-induced carcinogenesis study. Histopathological analysis characterized the pathological sample as a papillary urothelial carcinoma. Conventional cytogenetic analysis revealed the presence of 66.3 % tetraploid cells. Fluorescent in situ hybridization using chromosome paint probes allowed the detection of a reciprocal translocation involving chromosomes 4 and 14 (containing the murine homologues to human p16 and retinoblastoma tumor-suppressor genes) in 42 % of tetraploid cells. The control sample showed no histological or cytogenetic changes. CDKN2A and RB1 loss of heterozygosity is associated with human early and advanced urinary bladder cancer, respectively. Thus, the present data paves the way for further studies concerning the molecular mechanisms of urinary bladder carcinogenesis.


Urinary bladder cancer Mouse N-butyl-N-(4-hydroxybutyl) nitrosamine Papillary urothelial carcinoma Fluorescent in situ hybridization 



This study was supported by a grant from the Fundação para a Ciência e Tecnologia, Ministério da Educação, Portugal, grant number SFRH/BD/47612/2008 and by FCT Pest-OE/AGR/UI0772/2011 unity.

Conflicts of interest



  1. 1.
    Sharif Y, Irshad S. Animal models for human genetic diseases. Afr J Biotechnol. 2012;11(86):15200–5.Google Scholar
  2. 2.
    Oyasu R. Epithelial tumors of the lower urinary tract in humans and rodents. Food Chem Toxicol. 1995;33:747–55.CrossRefPubMedGoogle Scholar
  3. 3.
    Cohen SM. Comparative pathology of proliferative lesions of the urinary bladder. Toxicol Pathol. 2002;30:663.CrossRefPubMedGoogle Scholar
  4. 4.
    Vasconcelos-Nóbrega C, Colaço A, Lopes C, Oliveira PA. Review: BBN as an urothelial carcinogen. In Vivo. 2012;26(4):727–39.PubMedGoogle Scholar
  5. 5.
    Höglund M. The bladder cancer genome; chromosomal changes as prognostic makers, opportunities, and obstacles. Urol Oncol. 2012;30(4):533–40.CrossRefPubMedGoogle Scholar
  6. 6.
    Debiec-Rychter M, Zukowski K, Wang CY. Chromosomal characteristics and malignancy of urothelial cells from carcinogen-treated rats. J Natl Cancer Inst. 1989;81:361–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Balakrishnan S, Payawal J, Schuler MJ, Hasegawa L, Eastmond DA. Enhancing the in vitro and in vivo detection of aneuploidy by fluorescent in situ hybridization with the use of bromodeoxyuridine as a proliferation marker. Mutat Res. 2002;521:81–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Vecchione A, Sevignani C, Giarnieri E, Zanesi N, Ishii H, Cesari R, et al. Inactivation of the FHIT gene favors urinary bladder cancer development. Clin Cancer Res. 2004;10(22):7607–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Oliveira PA, Adega F, Palmeira CA, Chaves RM, Colaço AA, Guedes-Pinto H, et al. DNA study of bladder papillary tumors chemically induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in Fish rats. Int J Exp Pathol. 2007;88(1):39–46.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Eble J, Sauter G, Epstein J. Sesterhenn I. World Health Organization Classification of Tumors: Pathology and genetics of tumors of the urinary and male genital organs. ed. IARC Press. Lyon; 2004.Google Scholar
  11. 11.
    Quelle DE, Ashmun RA, Hannon GJ, Rehberger PA, Trono D, Richter KH, et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene. 1995;11(4):635–45.PubMedGoogle Scholar
  12. 12.
    Chien WW, Domenech C, Catallo R, Kaddar T, Magaud JP, Salles G, et al. Cyclin-dependent kinase 1 expression is inhibited by p16(INK4a) at the posttranscriptional level through the microRNA pathway. Oncogene. 2011;30(16):1880–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Romagosa C, Simonetti S, López-Vicente L, Mazo A, Lleonart ME, Castellvi J. Ramon y Cajal S. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene. 2011;30(18):2087–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Asamoto M, Hori T, Baba-Toriyama H, Sano M, Takahashi S, Tsuda H, et al. p16 gene overexpression in mouse bladder carcinomas. Cancer Lett. 1998;127(1–2):9–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Bartoletti R, Cai T, Nesi G, Roberta Girardi L, Baroni G, Dal CM. Loss of P16 expression and chromosome 9p21 LOH in predicting outcome of patients affected by superficial bladder cancer. J Surg Res. 2007;143(2):422–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Berggren P, Kumar R, Sakano S, Hemminki L, Wada T, Steineck G, et al. Detecting homozygous deletions in the CDKN2A(p16(INK4a))/ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin Cancer Res. 2003;9(1):235–42.PubMedGoogle Scholar
  17. 17.
    Pasin E, Josephson DY, Mitra AP, Cote RJ, Stein JP. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol. 2008;10(1):31–43.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Volanis D, Papadopoulos G, Doumas K, Gkialas I, Delakas D. Molecular mechanisms in urinary bladder carcinogenesis. J Buon. 2011;16(4):589–601.PubMedGoogle Scholar
  19. 19.
    Fadl-Elmula I. Chromosomal changes in uroepithelial carcinomas. Cell Chromosome. 2005;4:1.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Sengeløv L, Christensen M, von der Maase HD, Horn T, Marcussen N, Kamby C, et al. Loss of heterozygosity at 1p, 8p, 10p, 13q, and 17p in advanced urothelial cancer and lack of relation to chemotherapy response and outcome. Cancer Genet Cytogenet. 2000;123(2):109–13.CrossRefPubMedGoogle Scholar
  21. 21.
    Rosenberg JE, Hahn WC. Bladder cancer: modeling and translation. Genes Dev. 2009;23(6):655–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Wu D, Li Y, Song G, Zhang D, Shaw N, Liu ZJ. Crystal structure of human esterase D: a potential genetic marker of retinoblastoma. FASEB J. 2009;23(5):1441–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 2012;7(1):10.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Cordon-Cardo C, Wartinger D, Petrylak D, Dalbagni G, Fair WR, Fuks Z, et al. Altered expression of the retinoblastoma gene product: prognostic indicator in bladder cancer. J Natl Cancer Inst. 1992;84:1251–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Hsieh CL, Lee WH, Lee EY, Killary AM, Lalley PA, Naylor SL. Assignment of retinoblastoma susceptibility gene to mouse chromosome 14. Somat Cell Mol Genet. 1989;15(5):461–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One. 2010;5(11):e13821.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Knowles MA. Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis. 2006;27(3):361–73.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Regina Arantes-Rodrigues
    • 1
    • 2
  • Rosário Pinto-Leite
    • 3
  • Rui Gil da Costa
    • 4
  • Aura Colaço
    • 5
  • Carlos Lopes
    • 4
  • Paula Oliveira
    • 1
    • 2
  1. 1.Department of Veterinary Sciences, ECAVUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  2. 2.Center for the Study of Animal Sciences (CECA), ECAVUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  3. 3.Genetic Service, Cytogenetic LaboratoryHospital Center of Trás-os-Montes and Alto DouroVila RealPortugal
  4. 4.Pathology and Molecular Immunology, Abel Salazar Institute of Biomedical SciencesOporto UniversityPortoPortugal
  5. 5.Department of Veterinary Sciences, CECAVUniversity of Trás-os-Montes and Alto DouroVila RealPortugal

Personalised recommendations