Tumor Biology

, Volume 34, Issue 4, pp 2357–2366 | Cite as

CYP3A5*3 polymorphism and cancer risk: a meta-analysis and meta-regression

  • Bao-Sheng Wang
  • Zhen Liu
  • Wei-Xue Xu
  • Shao-Long Sun
Research Article


CYP3A5 is a cytochrome P450 superfamily member which is involved in the metabolism of drugs, steroid hormones, and other xenobiotics. Emerging evidences suggest that CYP3A5*3 (rs776746 A>G) polymorphism may play a role in the etiology of carcinogenesis and affect an individual's susceptibility to cancer in humans, but individually published studies showed inconclusive results. This meta-analysis aimed to derive a more accurate estimation of the correlation between CYP3A5*3 polymorphism and cancer risk. A literature search of PubMed, Embase, Web of Science, and China BioMedicine databases was conducted on articles published before January 1, 2013. Seventeen case–control studies were included with a total of 7,458 cancer patients and 7,166 healthy controls. The meta-analysis results showed that CYP3A5*3 polymorphism may increase the risk of cancer, especially in acute leukemia, chronic leukemia, and colorectal cancer. However, no statistically significant associations were found in prostate cancer, liver cancer, and other cancers. Further subgroup analysis by ethnicity indicated that CYP3A5*3 polymorphism was associated with an increased risk of cancer among Asian and Caucasian populations, but not among African populations. In conclusion, the current meta-analysis suggests that CYP3A5*3 polymorphism may play an important role in the development of acute and chronic leukemia and colorectal cancer, especially among Asian and Caucasian populations.


CYP3A5 Single-nucleotide polymorphism Cancer risk Meta-analysis Meta-regression 



This study was supported by the Science Foundation of Science and Technology Bureau of Liaoning Province of China (no. 2008225008–8).

Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Are C, Rajaram S, Are M, Raj H, Anderson BO, Chaluvarya Swamy R, et al. A review of global cancer burden: trends, challenges, strategies, and a role for surgeons. J Surg Oncol. 2013;107:221–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Rothman N, Wacholder S, Caporaso NE, Garcia-Closas M, Buetow K, Fraumeni Jr JF. The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens. Biochim Biophys Acta. 2001;1471:C1–10.PubMedGoogle Scholar
  4. 4.
    Fontham ET, Thun MJ, Ward E, Portier KM, Balch AJ, Delancey JO, et al. American Cancer Society perspectives on environmental factors and cancer. CA Cancer J Clin. 2009;59:343–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4:177–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Futreal PA, Kasprzyk A, Birney E, Mullikin JC, Wooster R, Stratton MR. Cancer and genomics. Nature. 2001;409:850–2.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartsch H, Dally H, Popanda O, Risch A, Schmezer P. Genetic risk profiles for cancer susceptibility and therapy response. Recent Results in Cancer Research Fortschritte der Krebsforschung Progres dans les Recherches sur le. Cancer. 2007;174:19–36.Google Scholar
  8. 8.
    Nebert DW, Dalton TP. The role of cytochrome p450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6:947–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Gellner K, Eiselt R, Hustert E, Arnold H, Koch I, Haberl M, et al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics. 2001;11:111–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E, et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics. 2003;13:461–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Agundez JA. Cytochrome p450 gene polymorphism and cancer. Curr Drug Metab. 2004;5:211–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Dandara C, Ballo R, Parker MI. CYP3A5 genotypes and risk of oesophageal cancer in two South African populations. Cancer Lett. 2005;225:275–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Li ZH, Tsuchiya N, Narita S, Inoue T, Horikawa Y, Kakinuma H, et al. CYP3A5 gene polymorphism and risk of prostate cancer in a Japanese population. Cancer Lett. 2005;225:237–43.CrossRefGoogle Scholar
  14. 14.
    Vaarala MH, Mattila H, Ohtonen P, Tammela TL, Paavonen TK, Schleutker J. The interaction of CYP3A5 polymorphisms along the androgen metabolism pathway in prostate cancer. Int J Cancer J Int Cancer. 2008;122:2511–6.CrossRefGoogle Scholar
  15. 15.
    Sailaja K, Rao DN, Rao DR, Vishnupriya S. Analysis of CYP3A5*3 and CYP3A5*6 gene polymorphisms in Indian chronic myeloid leukemia patients. Asian Pac J Cancer Prev: APJCP. 2010;11:781–4.PubMedGoogle Scholar
  16. 16.
    Bethke L, Webb E, Sellick G, Rudd M, Penegar S, Withey L, et al. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk. BMC Cancer. 2007;7:123.PubMedCrossRefGoogle Scholar
  17. 17.
    Gervasini G, Garcia-Martin E, Ladero JM, Pizarro R, Sastre J, Martinez C, et al. Genetic variability in CYP3A4 and CYP3A5 in primary liver, gastric and colorectal cancer patients. BMC Cancer. 2007;7:118.PubMedCrossRefGoogle Scholar
  18. 18.
    Petrova DT, Yaramov N, Toshev S, Nedeva P, Maslyankov S, von Ahsen N, et al. Genotyping of CYP3A5 polymorphisms among Bulgarian patients with sporadic colorectal cancer and controls. Onkologie. 2007;30:559–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Bajpai P, Tripathi AK, Agrawal D. Genetic polymorphism of CYP3A5 in Indian chronic myeloid leukemia patients. Mol Cell Biochem. 2010;336:49–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JP, Kirsch-Volders M, et al. Strengthening the reporting of observational studies in epidemiology–molecular epidemiology (STROBE-ME): an extension of the STROBE statement. PLoS Med. 2011;8:e1001117.PubMedCrossRefGoogle Scholar
  21. 21.
    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol. 2005;28:123–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Ioannidis JP, Patsopoulos NA, Rothstein HR. Reasons or excuses for avoiding meta-analysis in forest plots. BMJ. 2008;336:1413–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295:676–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Huang Z, Cai YH, Chen JN, He HL, Li J, Lu J. Association between CYP3A5 gene polymorphisms and childhood acute leukemia. Chin J Pediatr. 2007;45:546–8.Google Scholar
  26. 26.
    Lu HX, Feng ZB, Feng XL. A case–control study on the association of hepatocellular carcinoma with genetic polymorphisms of CYP3A5 in a highly aflatoxin b1 contaminated guangxi area. Chin J Hepatol. 2007;15:705–6.Google Scholar
  27. 27.
    Azarpira N, Ashraf MJ, Khademi B, Darai M, Hakimzadeh A, Abedi E. Study the polymorphism of CYP3A5 and CYP3A4 loci in Iranian population with laryngeal squamous cell carcinoma. Mol Biol Rep. 2011;38:5443–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Borst L, Wallerek S, Dalhoff K, Rasmussen KK, Wesenberg F, Wehner PS, et al. The impact of CYP3A5*3 on risk and prognosis in childhood acute lymphoblastic leukemia. Eur J Haematol. 2011;86:477–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Kristiansen W, Haugen TB, Witczak O, Andersen JM, Fossa SD, Aschim EL. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility. Int J Androl. 2011;34:77–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Lim JS, Chen XA, Singh O, Yap YS, Ng RC, Wong NS, et al. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol. 2011;71:737–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Rao DN, Manjula G, Sailaja K, Surekha D, Raghunadharao D, Rajappa S, et al. Association of CYP3A5*3 polymorphism with development of acute leukemia. Indian J Hum Genet. 2011;17:175–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Fernandez P, Zeigler-Johnson CM, Spangler E, van der Merwe A, Jalloh M, Gueye SM, et al. Androgen metabolism gene polymorphisms, associations with prostate cancer risk and pathological characteristics: a comparative analysis between south African and Senegalese men. Prostate Cancer. 2012;2012:798634.PubMedCrossRefGoogle Scholar
  33. 33.
    Silveira VS, Canalle R, Scrideli CA, Queiroz RG, Lopes LF, Tone LG. CYP3A5 and NAT2 gene polymorphisms: role in childhood acute lymphoblastic leukemia risk and treatment outcome. Mol Cell Biochem. 2012;364:217–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Willrich MA, Hirata MH, Hirata RD. Statin regulation of CYP3A4 and CYP3A5 expression. Pharmacogenomics. 2009;10:1017–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002;54:1271–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Roco A, Quinones L, Agundez JA, Garcia-Martin E, Squicciarini V, Miranda C, et al. Frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the Chilean population: comparison with Caucasian and Asian populations. Front Genet. 2012;3:229.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenthal R, DiMatteo MR. Meta-analysis: recent developments in quantitative methods for literature reviews. Annu Rev Psychol. 2001;52:59–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Rendic S, Guengerich FP. Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol. 2012;25:1316–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Walsky RL, Obach RS, Hyland R, Kang P, Zhou S, West M, et al. Selective mechanism-based inactivation of CYP3A4 by CYP3cide (PF-04981517) and its utility as an in vitro tool for delineating the relative roles of CYP3A4 versus CYP3A5 in the metabolism of drugs. Drug Metab Dispos: Biol Fate Chem. 2012;40:1686–97.CrossRefGoogle Scholar
  40. 40.
    Ioannidis JP, Lau J. Pooling research results: benefits and limitations of meta-analysis. Jt Comm J Qual Improv. 1999;25:462–9.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Bao-Sheng Wang
    • 1
  • Zhen Liu
    • 1
  • Wei-Xue Xu
    • 1
  • Shao-Long Sun
    • 1
  1. 1.Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangPeople’s Republic of China

Personalised recommendations