Skip to main content
Log in

Reduced succinate dehydrogenase B expression is associated with growth and de-differentiation of colorectal cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Succinate dehydrogenases (SDH), including SDHA, SDHB, SDHC, and SDHD, form the respiratory complex II in the mitochondria and play an important role in cell growth and homeostasis. In order to evaluate the expression and functional significance of SDH in colorectal cancer, the expression of four SDH subunits was analyzed, and SDHB protein was found to be significantly lower in colorectal cancer tissues. In vitro experiments including cell growth assay, colony formation assay, cell cycle analysis, and nude mouse xenograft of SDHB-transfected colorectal cancer cell line SW620 were performed. Notably, reduced SDHB expression in tumor tissues was associated with tumor de-differentiation, and restoration of SDHB could inhibit the growth of cancer cells both in vitro and in vivo. Furthermore, cDNA microarray of SDHB-transfected cell line showed that most of the differentially expressed genes are related to cell cycle control and cell proliferation. Thus, we conclude that SDHB expression is significantly decreased in human colorectal cancer tissues, and reconstitution of SDHB in colorectal cancer may be a potential therapeutic approach to inhibit aggressiveness of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19:1893–907.

    Article  PubMed  Google Scholar 

  2. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  PubMed  CAS  Google Scholar 

  3. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  PubMed  CAS  Google Scholar 

  4. Macleod K. Tumor suppressor genes. Curr Opin Genet Dev. 2000;10:81–93.

    Article  PubMed  CAS  Google Scholar 

  5. Peng Y, Li X, Wu M, Yang J, Liu M, Zhang W, et al. New prognosis biomarkers identified by dynamic proteomic analysis of colorectal cancer. Mol Biosyst. 2012;8:3077–88.

    Article  PubMed  CAS  Google Scholar 

  6. Bardella C, Pollard PJ, Tomlinson I. SDH mutations in cancer. Biochim Biophys Acta. 1807;2011:1432–43.

    Google Scholar 

  7. Rustin P, Munnich A, Rötig A. Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur J Hum Genet. 2002;10:289–91.

    Article  PubMed  CAS  Google Scholar 

  8. Saraste M. Oxidative phosphorylation at the fin de siècle. Science. 1999;283:1488–93.

    Article  PubMed  CAS  Google Scholar 

  9. Scheffler IE. Molecular genetics of succinate:quinone oxidoreductase in eukaryotes. Prog Nucleic Acid Res Mol Biol. 1998;60:267–315.

    Article  PubMed  CAS  Google Scholar 

  10. Bolland M, Benn D, Croxson M, McCall J, Shaw JF, Baillie T, et al. Gastrointestinal stromal tumour in succinate dehydrogenase subunit B mutation-associated familial phaeochromocytoma/paraganglioma. ANZ J Surg. 2006;76:763–4.

    Article  PubMed  Google Scholar 

  11. Kantorovich V, King KS, Pacak K. SDH-related pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab. 2010;24:415–24.

    Article  PubMed  CAS  Google Scholar 

  12. Pasini B, Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med. 2009;266:19–42.

    Article  PubMed  CAS  Google Scholar 

  13. Rutter J, Winge DR, Schiffman JD. Succinate dehydrogenase—assembly, regulation and role in human disease. Mitochondrion. 2010;10:393–401.

    Article  PubMed  CAS  Google Scholar 

  14. Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M, Morrison CD, et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet. 2004;74:153–9.

    Article  PubMed  CAS  Google Scholar 

  15. Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1:72–80.

    Article  PubMed  CAS  Google Scholar 

  16. Gimenez-Roqueplo AP, Favier J, Rustin P, Mourad JJ, Plouin PF, Corvol P, et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet. 2001;69:1186–97.

    Article  PubMed  CAS  Google Scholar 

  17. Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Kerlan V, Plouin PF, et al. Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J Clin Endocrinol Metab. 2002;87:4771–4.

    Article  PubMed  CAS  Google Scholar 

  18. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14:2231–9.

    Article  PubMed  CAS  Google Scholar 

  19. Peng Y, Li H, Wu M, Wang X, Fan S, Liu F, et al. NGX6 inhibits AP-1 and Ets-1 expression and down-regulates cyclin D1 in human colorectal cancer. Acta Biochim Biophys Sin (Shanghai). 2009;41:504–14.

    Article  CAS  Google Scholar 

  20. Li W, Li X, Wang W, Tan Y, Yi M, Yang J, et al. NOR1 is an HSF1- and NRF1-regulated putative tumor suppressor inactivated by promoter hypermethylation in nasopharyngeal carcinoma. Carcinogenesis. 2011;32:1305–14.

    Article  PubMed  Google Scholar 

  21. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  22. Burnichon N, Brière JJ, Libé R, Vescovo L, Rivière J, Tissier F, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010;19:3011–20.

    Article  PubMed  CAS  Google Scholar 

  23. Celestino R, Lima J, Faustino A, Máximo V, Gouveia A, Vinagre J, et al. A novel germline SDHB mutation in a gastrointestinal stromal tumor patient without bona fide features of the Carney-Stratakis dyad. Fam Cancer. 2012;11:189–94.

    Article  PubMed  Google Scholar 

  24. Zantour B, Guilhaume B, Tissier F, Louvel A, Jeunemaitre X, Gimenez-Roqueplo AP, et al. A thyroid nodule revealing a paraganglioma in a patient with a new germline mutation in the succinate dehydrogenase B gene. Eur J Endocrinol. 2004;151:433–8.

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong R, Greenhalgh KL, Rattenberry E, Judd B, Shukla R, Losty PD, et al. Succinate dehydrogenase subunit B (SDHB) gene deletion associated with a composite paraganglioma/neuroblastoma. J Med Genet. 2009;46:215–6.

    Article  PubMed  CAS  Google Scholar 

  26. Housley SL, Lindsay RS, Young B, McConachie M, Mechan D, Baty D, et al. Renal carcinoma with giant mitochondria associated with germ-line mutation and somatic loss of the succinate dehydrogenase B gene. Histopathology. 2010;56:405–8.

    Article  PubMed  Google Scholar 

  27. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85.

    Article  PubMed  CAS  Google Scholar 

  28. Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003;299:700–4.

    Article  PubMed  CAS  Google Scholar 

  29. Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer. 2005;5:857–66.

    Article  PubMed  CAS  Google Scholar 

  30. Kaelin Jr WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    Article  PubMed  CAS  Google Scholar 

  31. Adachi H, Fujiwara Y, Ishii N. Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci. 1998;53:B240–4.

    Article  PubMed  CAS  Google Scholar 

  32. Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res. 2005;65:203–9.

    PubMed  CAS  Google Scholar 

  33. Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE, et al. Mutation of succinate dehydrogenase subunit C results in increased O2.-, oxidative stress, and genomic instability. Cancer Res. 2006;66:7615–20.

    Article  PubMed  CAS  Google Scholar 

  34. Smith EH, Janknecht R, Maher 3rd LJ. Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum Mol Genet. 2007;16:3136–48.

    Article  PubMed  CAS  Google Scholar 

  35. Goffrini P, Ercolino T, Panizza E, Giachè V, Cavone L, Chiarugi A, et al. Functional study in a yeast model of a novel succinate dehydrogenase subunit B gene germline missense mutation (C191Y) diagnosed in a patient affected by a glomus tumor. Hum Mol Genet. 2009;18:1860–8.

    Article  PubMed  CAS  Google Scholar 

  36. Szeto SS, Reinke SN, Sykes BD, Lemire BD. Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate. J Biol Chem. 2007;282:27518–26.

    Article  PubMed  CAS  Google Scholar 

  37. Leibovitz A, Stinson JC, McCombs 3rd WB, McCoy CE, Mazur KC, Mabry ND. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976;36:4562–9.

    PubMed  CAS  Google Scholar 

  38. Lewis SP, Willis AN, Johnson AE, Resau J, Burnatowska-Hledin MA. Mutational analysis of VACM-1/cul5 exons in cancer cell lines. APMIS. 2011;119:421–30.

    Article  PubMed  CAS  Google Scholar 

  39. Xu XM, Wang XB, Chen MM, Liu T, Li YX, Jia WH, et al. Microrna-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett. 2012;322:148–58.

    Article  PubMed  CAS  Google Scholar 

  40. Bender FC, Reymond MA, Bron C, Quest AF. Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res. 2000;60:5870–8.

    PubMed  CAS  Google Scholar 

  41. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29–39.

    Article  PubMed  CAS  Google Scholar 

  42. Weng LP, Brown JL, Baker KM, Ostrowski MC, Eng C. PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway. Hum Mol Genet. 2002;11:1687–96.

    Article  PubMed  CAS  Google Scholar 

  43. Ni Y, Zbuk KM, Sadler T, Patocs A, Lobo G, Edelman E, et al. Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet. 2008;83:261–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 81172300, 81000883). We are grateful for the support of Medjaden Bioscience Limited.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiayu Li or Shourong Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 1185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Wang, W., Xiang, B. et al. Reduced succinate dehydrogenase B expression is associated with growth and de-differentiation of colorectal cancer cells. Tumor Biol. 34, 2337–2347 (2013). https://doi.org/10.1007/s13277-013-0781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0781-4

Keywords

Navigation