Tumor Biology

, Volume 34, Issue 3, pp 1275–1284 | Cite as

The war on cancer: are we winning?

  • M. J. Duffy


Of all the diseases affecting humankind, cancer is one of the most difficult to treat and cure. One of the main reasons for this difficulty relates to the fact that cancer is not a single disease but consists of hundreds of different types. Furthermore, cancers exhibit considerable genetic complexity with more than 400 different genes implicated in their development. In addition, cancers display major inter- and intratumor heterogeneity. Despite these complexities, several successes have been achieved in recent years. Most of these successes relate to the specific targeting of driver genes involved in cancer development. These successes include imatinib for the treatment of chronic myeloid leukemia, anti-HER2 therapies (trastuzumab, pertuzumab, and lapatinib) to treat breast cancer, anti-EGFR tyrosine kinase inhibitors (gefitinib and erlotinib) to treat non-small cell lung cancer, and anti-BRAF agents (vemurafenib and dabrafenib) to treat melanoma. Although the war on cancer has not yet been won, neither has it been lost. With continued basic and clinical research, cancer is being transformed into a chronic disease in which patients have increased survival rates and better quality of life.


War on cancer Targeted therapy Biomarker Cancer Tumor marker Predictive marker 



The author wishes to thank Dr Patricia McGowan and Maeve Mullooly for reading and commenting on this manuscript. The author thanks Science Foundation Ireland, The Health Research Board of Ireland and The Irish Cancer Society for funding his work.


  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92. Erratum in: N Engl J Med 2012;367:976.PubMedCrossRefGoogle Scholar
  3. 3.
    Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 2011;20:810–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Schuh A, Becq J, Humphray S, Alexa A, Burns A, Clifford R, et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood. 2012;120:4191–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Ene CI, Fine HA. Many tumors in one: a daunting therapeutic prospect. Cancer Cell. 2011;20:695–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Stratton MR. Exploring the genome of cancer cells: progress and promise. Science. 2011;331:1553–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Garay JP, Gray JW. Omics and therapy—a basis for precision medicine. Mol Oncol. 2012;6:128–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9.PubMedCrossRefGoogle Scholar
  14. 14.
    The Cancer Genome Atlas Network. Comprehensive molecular portrait of human breast tumors. Nature. 2012;490:61–70.CrossRefGoogle Scholar
  15. 15.
    The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–6.CrossRefGoogle Scholar
  16. 16.
    Peifer M, Fernández-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44:1104–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang Z. Genetic landscape of liver cancer. Nature Gen. 2012;44:1075–7.CrossRefGoogle Scholar
  18. 18.
    Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumor suppression. Nature. 2011;476:163–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Duffy MJ. Tumor markers in clinical practice: a review focusing on common solid cancers. Med Princ Pract. 2013;22:4–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Nowell PC, Hungerford DA. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst. 1961;27:1013–35.PubMedGoogle Scholar
  21. 21.
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346:645–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferdinand R, Mitchell SA, Batson S, Tumur I. Treatments for chronic myeloid leukemia: a qualitative systematic review. J Blood Med. 2012;3:51–76.PubMedGoogle Scholar
  24. 24.
    Hantschel O, Grebien F, Superti-Furga G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res. 2012;72:4890–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Westin JR, Kurzrock R. It's about time: lessons for solid tumors from chronic myelogenous leukemia therapy. Mol Cancer Ther. 2012;11:2549–55.PubMedCrossRefGoogle Scholar
  26. 26.
    Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Sem Oncol. 2001;28 Suppl 3:13–9.CrossRefGoogle Scholar
  27. 27.
    Hurvitz SA, Hu Y, O'Brien N, Finn RS. Current approaches and future directions in the treatment of HER2-positive breast cancer. Cancer Treat Rev. 2013;39:219–29.PubMedCrossRefGoogle Scholar
  28. 28.
    Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene. 1995;10:1813–21.PubMedGoogle Scholar
  29. 29.
    Abramson V, Arteaga CL. New strategies in HER2-overexpressing breast cancer: many combinations of targeted drugs available. Clin Cancer Res. 2011;17:952–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Yin W, Jiang Y, Shen Z, Shao Z, Lu J. Trastuzumab in the adjuvant treatment of HER2-positive early breast cancer patients: a meta-analysis of published randomized controlled trials. PLoS One. 2011;6:e21030.PubMedCrossRefGoogle Scholar
  31. 31.
    Harris CA, Ward RL, Dobbins TA, Drew AK, Pearson S. The efficacy of HER2-targeted agents in metastatic breast cancer: a meta-analysis. Ann Oncol. 2011;22:1308–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J Clin Oncol. 2010;28:92–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist. 1998;3:237–52.PubMedGoogle Scholar
  34. 34.
    Ahn ER, Vogel CL. Dual HER2-targeted approaches in HER2-positive breast cancer. Breast Cancer Res Treat. 2012;131:371–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Untch M, Loibl S, Bischoff J, Eidtmann H, Kaufmann M, Blohmer JU, et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol. 2012;13:135–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Baselga J, Bradbury I, Eidtmann H, Di Cosimo S, de Azambuja E, Aura C, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2012;379:633–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Baselga J, Cortés J, Kim SB, Im SA, Hegg R, Im YH, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.PubMedCrossRefGoogle Scholar
  38. 38.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Lemos C, Sack U, Schmid F, Juneja M, Stein U. Anti-metastatic treatment in colorectal cancer: targeting signaling pathways. Curr Pharm Des. 2013;9:841–63.Google Scholar
  40. 40.
    Yang X, Zhang X, Mortenson ED, Radkevich-Brown O, Wang Y, Fu YX. Cetuximab-mediated tumor regression depends on innate and adaptive immune responses. Mol Ther. 2013;21:91–100.PubMedCrossRefGoogle Scholar
  41. 41.
    Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 2005;23:1803–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Adelstein BA, Dobbins TA, Harris CA, Marschner IC, Ward RL. A systematic review and meta-analysis of KRAS status as the determinant of response to anti-EGFR antibodies and the impact of partner chemotherapy in metastatic colorectal cancer. Eur J Cancer. 2011;47:1343–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Vale CL, Tierney JF, Fisher D, Adams RA, Kaplan R, Maughan TS, et al. Does anti-EGFR therapy improve outcome in advanced colorectal cancer? A systematic review and meta-analysis. Cancer Treat Rev. 2012;38:618–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Heuckmann JM, Rauh D, Thomas RK. Epidermal growth factor receptor (EGFR) signaling and covalent EGFR inhibition in lung cancer. J Clin Oncol. 2012;30:3417–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Rossi A, Pasquale R, Esposito C, Normanno N. Should epidermal growth factor receptor tyrosine kinase inhibitors be considered ideal drugs for the treatment of selected advanced non-small cell lung cancer patients? Cancer Treat Rev. 2012. doi: 10.1016/j.ctrv.2012.09.001.Google Scholar
  46. 46.
    Moran T, Sequist LV. Timing of epidermal growth factor receptor tyrosine kinase inhibitor therapy in patients with lung cancer with EGFR mutations. J Clin Oncol. 2012;30:3330–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Soria JC, Mok TS, Cappuzzo F, Jänne PA. EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev. 2012;38:416–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Woodman SE, Lazar AJ, Aldape KD, Davies MA. New strategies in melanoma: molecular testing in advanced disease. Clin Cancer Res. 2012;18:1195–200.PubMedCrossRefGoogle Scholar
  49. 49.
    Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.PubMedCrossRefGoogle Scholar
  50. 50.
    Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.PubMedCrossRefGoogle Scholar
  53. 53.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703. Erratum in: N Engl J Med. 2011;364:588.PubMedCrossRefGoogle Scholar
  54. 54.
    Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97. Erratum in: Lancet 2010;376:1302.PubMedCrossRefGoogle Scholar
  56. 56.
    Blay JY, von Mehren M, Blackstein ME. Perspective on updated treatment guidelines for patients with gastrointestinal stromal tumors. Cancer. 2010;116:5126–37.PubMedCrossRefGoogle Scholar
  57. 57.
    Reichardt P, Blay J-Y, von Mehren M. Towards a global consensus in the treatment of gastrointestinal stromal tumor. Expert Rev Anticancer Ther. 2010;10:221–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Bailar JC, Gornik HL. Cancer undefeated. N Engl J Med. 1997;336:1569–74.PubMedCrossRefGoogle Scholar
  59. 59.
    Hahn OM, Schilsky RL. Randomized controlled trials and comparative effectiveness research. J Clin Oncol. 2012;30:4194–201.PubMedCrossRefGoogle Scholar
  60. 60.
    Garraway LA, Janne PA. Circumventing cancer drug resistance in the era of personalised medicine. Cancer Discovery. 2012;2:214–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Sullivan R, Peppercorn J, Sikora K, Zalcberg J, Meropol NJ, Amir E, et al. Delivering affordable cancer care in high-income countries. Lancet Oncol. 2011;12:933–80.PubMedCrossRefGoogle Scholar
  62. 62.
    Fojo T, Grady C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J Natl Cancer Inst. 2009;101:1044–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–66.PubMedCrossRefGoogle Scholar
  64. 64.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Goozner M. Concerns about Provenge simmer as CMS ponders coverage. J Natl Cancer Instit. 2011;103:288–9.CrossRefGoogle Scholar
  66. 66.
    Lichtenberg FR. Despite steep costs, payments for new cancer drugs make economic sense. Nat Med. 2011;17:244.PubMedCrossRefGoogle Scholar
  67. 67.
    DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol. 2007;25:209–16.PubMedCrossRefGoogle Scholar
  68. 68.
    Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates. Nature Rev Drug Discovery. 2004;3:711–5.CrossRefGoogle Scholar
  69. 69.
    Berry DA. Adaptive clinical trials in oncology. Nat Rev Clin Oncol. 2012;8(9):199–207.Google Scholar
  70. 70.
    Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. 2009;101:1446–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Kripke M. Reducing death from cancer: what will it take? Tumor Biol. 2012;33:1275–8.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  1. 1.UCD Clinical Research CentreSt Vincent’s University HospitalDublinIreland
  2. 2.UCD School of Medicine and Medical Science, Conway InstituteUniversity College DublinDublinIreland

Personalised recommendations