Advertisement

Tumor Biology

, Volume 34, Issue 3, pp 1901–1911 | Cite as

Alterations in K-ras, APC and p53-multiple genetic pathway in colorectal cancer among Indians

  • Pooja Malhotra
  • Mumtaz Anwar
  • Neha Nanda
  • Rakesh Kochhar
  • Jai Dev Wig
  • Kim Vaiphei
  • Safrun Mahmood
Research Article

Abstract

The incidence of colorectal cancer (CRC) is increasing rapidly in Asian countries during the past few decades, but no comprehensive analysis has been done to find out the exact cause of this disease. In this study, we investigated the frequencies of mutations and expression pattern of K-ras, APC (adenomatosis polyposis coli) and p53 in tumor, adjoining and distant normal mucosa and to correlate these alterations with patients clinicopathological parameters as well as with the survival. Polymerase chain reaction (PCR)-restriction digestion was used to detect mutations in K-ras and PCR-SSCP (Single Strand Conformation Polymorphism) followed by DNA sequencing was used to detect mutations in APC and p53 genes. Immunohistochemistry was used to detect the expression pattern of K-ras, APC and p53 proteins. The frequencies of mutations of K-ras, APC and p53 in 30 tumor tissues samples were 26.7 %, 46.7 % and 20 %, respectively. Only 3.3 % of tumors contained mutations in all the three genes. The most common combination of mutation was APC and p53 whereas mutation in both p53 and K-ras were extremely rare. There was no association between the mutations and expression pattern of K-ras, APC and p53 (p > 0.05). In Indians, the frequency of alterations of K-ras and APC is similar as in Westerns, whereas the frequency of p53 mutation is slightly lower. The lack of multiple mutations in tumor specimens suggests that these genetic alterations might have independent influences on CRC development and there could be multiple alternative genetic pathways to CRC in our present study cohort.

Keywords

Colorectal cancer APC K-ras p53 Mutation 

Notes

Acknowledgements

We acknowledge the staff of OT, and Exp. Med and Biotech for their support and help in collecting the samples. Financial assistance from Indian Council of Medical research (ICMR), New Delhi is highly acknowledged.

Conflicts of interest

None.

References

  1. 1.
    Boyle P, Lagman J. ABC of colorectal cancer—epidemiology. Br Med J. 2000;321:805–8.CrossRefGoogle Scholar
  2. 2.
    Parkin DM, Muir CS, Whelan SL, Gao JT, Ferlay J, Powell J. Cancer Incidence in five continents, comparability and quality of data. Intl Agency Res Cancer Lyon France. 1992;120:45–173.Google Scholar
  3. 3.
    Sung JJ, Lau JY, Goh KL, Leung WK. Asia Pacific Working Group on Colorectal Cancer. Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol. 2005;6(11):871–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal tumor development. N Engl J Med. 1988;319:525–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.PubMedCrossRefGoogle Scholar
  6. 6.
    Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600.PubMedCrossRefGoogle Scholar
  7. 7.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1:55–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Bodmer WF, Bailey CJ, Bodmer J, Bussey H, Ellis A, Gorman P, et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328:614–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Nakamura Y. The role of the adenomatous polyposis coli (APC) gene in human cancers. Adv Cancer Res. 1993;62:65–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–6.PubMedGoogle Scholar
  12. 12.
    Baker SJ, Preisinger AC, Jessup JM, Paraskeva C, Markowitz S, Willson JK, et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990;50:7717–22.PubMedGoogle Scholar
  13. 13.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, et al. Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A. 2009;99(14):9433–8.CrossRefGoogle Scholar
  15. 15.
    Sriram PVJ, Kochhar R, Bhasin DK, Vaiphei K, Goenka MK, Singh K. Colonoscopic surveillance for synchronous lesions in colorectal carcinoma in north India. Eur J Cancer Supp. 1998;2(34):S16.Google Scholar
  16. 16.
    Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001. p. 6.4–6.12.Google Scholar
  17. 17.
    Ando M, Maruyama M, Oto M, Takemura K, Endo M, Yuasa Y. Higher frequency of point mutations in the c-k-ras2 gene in human colorectal adenomas with severe atypia than in carcinomas. Jpn J Cancer Res. 1991;82:245–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Poncin J, Mulkens J, Arends JW, De Goeij A. Optimizing the APC gene mutation analysis in archival colorectal tumor tissue. Diagn Mol Pathol. 1998;8:11–9.CrossRefGoogle Scholar
  19. 19.
    Sturm I, Kohne CH, Wolff G, Petrowsky H, Hillebrand T, Hauptmann S, et al. Analysis of the p53/BAX pathway in colorectal cancer: low BAX is a negative prognostic factor in patients with resected liver metastases. J Clin Oncol. 1999;17:1364–74.PubMedGoogle Scholar
  20. 20.
    Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1991;1(1):34–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Ilyas M, Straub J, Tomlinson IP, Bodmer WF. Genetic pathways in colorectal and other cancers. Eur J Cancer. 1999;35:1986–2002.PubMedCrossRefGoogle Scholar
  22. 22.
    Jeon CH, Lee HI, Shin IH, Park JW. Genetic alterations of APC, K-ras, p53, MSI, and MAGE in Korean colorectal cancer patients. Int J Color Dis. 2007;23(1):29–35.CrossRefGoogle Scholar
  23. 23.
    Konig EA, Koves I, Rasinariu A, Popp AR, Kusser WC, Soyonki K, et al. Alterations of K-ras and p53 mutations in colorectal cancer patients in Central Europe. J Toxicol Environ Health A. 2001;62(5):333–47.PubMedCrossRefGoogle Scholar
  24. 24.
    Esteller M, Gonzalez S, Risques RA, Marcuello E, Mangues R, Germa JR, et al. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol. 2001;19(2):299–304.PubMedGoogle Scholar
  25. 25.
    Brink M, Weijenberg MP, De Goeij AF, Schouten LJ, Koedijk FD, Roemen GM, et al. Fat and K-ras mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis. 2004;25(9):1619–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ. The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut. 2005;54(9):1283–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Samowitz WS, Holden JA, Curtin K, Edwards SL, Walker AR, Lin HA, et al. Inverse relationship between microsatellite instability and K-ras and p53 gene alterations in colon cancer. Am J Pathol. 2001;158(4):1517–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Van Engeland M, Roemen GM, Brink M, Pachen MM, Weijenberg MP, de Bruine AP, et al. K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene. 2002;21(23):3792–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Onda M, Abe R, Tsuchiya A, Fukushima T, Ando Y, Yoshida T. K-ras and p53 gene mutations in colorectal cancer in 57 Japanese patients. Fukushima J Med Sci. 1997;43(1):29–39.PubMedGoogle Scholar
  30. 30.
    Pan ZZ, Wan DS, Chen G, Li LR, Lu ZH, Huang BJ. Co-mutation of p53, K-ras genes and accumulation of p53 protein and its correlation to clinicopathological features in rectal cancer. World J Gastroenterol. 2004;10(24):3688–90.PubMedGoogle Scholar
  31. 31.
    Servomaa K, Kiuru A, Kosma VM, Hirvikoski P, Rytomaa T. p53 and K-ras gene mutations in carcinoma of the rectum among Finnish women. Mol Pathol. 2000;53(1):24–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Luchtenborg M, Weijenberg MP, Roemen GM, de Bruine AP, van den Brandt PA, Lentjes MH, et al. APC mutations in sporadic colorectal carcinomas from The Netherlands Cohort Study. Carcinogenesis. 2004;25(7):1219–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim JC, Koo KH, Lee DH, Roh SA, Kim HC, Yu CS, et al. Mutations at the APC exon 15 in the colorectal neoplastic tissues of serial array. Int J Color Dis. 2001;16(2):102–7.CrossRefGoogle Scholar
  34. 34.
    Yuan P, Sun MH, Zhang JS, Zhu XZ, Shi DR. APC and K-ras gene mutation in aberrant crypt foci of human colon. World J Gastroenterol. 2001;7(3):352–6.PubMedGoogle Scholar
  35. 35.
    Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359(6392):235–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Fujimori M, Ikeda S, Shimizu Y, Okajima M, Asahara T. Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res. 2001;61(18):6656–9.PubMedGoogle Scholar
  37. 37.
    Frattini M, Balestra D, Suardi S, Oggionni M, Alberici P, Radice P, et al. Different genetic features associated with colon and rectal carcinogenesis. Clin Cancer Res. 2004;10(12):4015–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Ozaki S, Ikeda S, Ishizaki Y, Kurihara T, Tokumoto N, Iseki M, et al. Alterations and correlations of the components in the Wntsignaling pathway and its target genes in breast cancer. Oncol Rep. 2005;14(6):1437–43.PubMedGoogle Scholar
  39. 39.
    Iwamoto M, Ahnen DJ, Franklin WA, Maltzman TH. Expression of beta-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis. 2000;21(11):1935–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60(16):4366–71.PubMedGoogle Scholar
  41. 41.
    Calistri D, Rengucci C, Seymour I, Lattuneddu A, Polifemo AM, Monti F, et al. Mutation analysis of p53, K-ras, and BRAF genes in colorectal cancer progression. J Cell Physiol. 2005;204(2):484–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Samowitz WS, Curtin K, Ma KN, Edwards S, Schaffer D, Leppert MF, et al. Prognostic significance of p53 mutations in colon cancer at the population level. Int J Cancer. 2002;99(4):597–602.PubMedCrossRefGoogle Scholar
  43. 43.
    Soong R, Powell B, Elsaleh H, Gnanasampanthan G, Smith DR, Goh HS, et al. Prognostic significance of TP53 gene mutation in 995 cases of colorectal carcinoma. Influence of tumour site, stage, adjuvant chemotherapy and type of mutation. Eur J Cancer. 2000;36(16):2053–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Soussi T, Dehouche K, Beroud C. p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum Mutat. 2000;15(1):105–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Soussi T, Beroud C. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat. 2003;21(3):192–200.PubMedCrossRefGoogle Scholar
  46. 46.
    Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, et al. p53 mutations in colorectal cancer. Proc Natl Acad Sci U S A. 1990;87(19):7555–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Tullo A, D'Erchia AM, Honda K, Mitry RR, Kelly MD, Habib NA, et al. Characterization of p53 mutations in colorectal liver metastases and correlation with clinical parameters. Clin Cancer Res. 1999;5(11):3523–8.PubMedGoogle Scholar
  48. 48.
    Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21(48):7435–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Liu Y, Bodmer WF. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci U S A. 2006;103(4):976–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Munro AJ, Lain S, Lane DP. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer. 2005;92(3):434–44.PubMedGoogle Scholar
  51. 51.
    Soong R, Robbins PD, Dix BR, Grieu F, Lim B, Knowles S, et al. Concordance between p53 protein overexpression and gene mutation in a large series of common human carcinomas. Hum Pathol. 1996;27(10):1050–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Dix B, Robbins P, Carrello S, House A, Iacopetta B. Comparison of p53 gene mutation and protein overexpression in colorectal carcinomas. Br J Cancer. 1994;70(4):585–90.PubMedCrossRefGoogle Scholar
  53. 53.
    Cripps KJ, Purdie CA, Carder PJ, White S, Komine K, Bird CC, et al. A study of stabilisation of p53 protein versus point mutation in colorectal carcinoma. Oncogene. 1994;9(9):2739–43.PubMedGoogle Scholar
  54. 54.
    Visscher DW, Sarkar FH, Shimoyama RK, Crissman JD. Correlation between p53 immunostaining patterns and gene sequence mutations in breast carcinoma. Diagn Mol Pathol. 1996;5(3):187–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Campo E, de la Calle-Martin O, Miquel R, Palacin A, Romero M, Fabregat V, et al. Loss of heterozygosity of p53 gene and p53 protein expression in human colorectal carcinomas. Cancer Res. 1991;51(16):4436–42.PubMedGoogle Scholar
  56. 56.
    Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1(4):229–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Andreyev HJ, Tilsed JV, Cunningham D, Sampson SA, Norman AR, Schneider HJ, et al. K-ras mutations in patients with early colorectal cancers. Gut. 1997;41(3):323–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Brentnall TA, Crispin DA, Rabinovitch PS, Haggitt RC, Rubin CE, Stevens AC, et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology. 1994;107(2):369–78.PubMedGoogle Scholar
  59. 59.
    Belluco C, Guillem JG, Kemeny N, Huang Y, Klimstra D, Berger MF, et al. p53 nuclear protein overexpression in colorectal cancer: a dominant predictor of survival in patients with advanced hepatic metastases. J Clin Oncol. 1996;14(10):2696–701.PubMedGoogle Scholar
  60. 60.
    Lim SC, Lee TB, Choi CH, Ryu SY, Min YD, Kim KJ. Prognostic significance of cyclooxygenase-2 expression and nuclear p53 accumulation in patients with colorectal cancer. J Surg Oncol. 2008;97:51–6.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Pooja Malhotra
    • 1
  • Mumtaz Anwar
    • 1
  • Neha Nanda
    • 2
  • Rakesh Kochhar
    • 1
  • Jai Dev Wig
    • 3
  • Kim Vaiphei
    • 4
  • Safrun Mahmood
    • 2
  1. 1.Department of GastroenterologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  2. 2.Department of Experimental Medicine and BiotechnologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  3. 3.Department of General SurgeryPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  4. 4.Department of HistopathologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations