Tumor Biology

, Volume 34, Issue 3, pp 1807–1812 | Cite as

Clinical significance of RUNX2 expression in patients with nonsmall cell lung cancer: a 5-year follow-up study

  • Hong Li
  • Ren-Jie Zhou
  • Guo-Qiang Zhang
  • Jian-Ping Xu
Research Article


This study was designed to evaluate expression and prognostic significance of runt-related transcription factor (RUNX)-2 in human nonsmall cell lung cancer (NSCLC). RUNX2 expression was examined at mRNA and protein levels by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot in NSCLC tissues and adjacent normal tissues. In addition, RUNX2 expression was analyzed by immunohistochemistry in 121 clinicopathologically characterized NSCLC cases. The relationship between the expression of RUNX2 and clinicopathological characteristics and prognosis was statistically analyzed. Both qRT-PCR and Western blot demonstrated that RUNX2 mRNA and protein levels were significantly higher in NSCLC tissues compared to the adjacent normal tissues from the same individual. Immunohistochemistry analysis showed that RUNX2 expression was significantly correlated with tumor size, tumor stage, and lymph node metastasis. Higher RUNX2 expression was associated with shorter postoperative survival time of NSCLC patients by Kaplan–Meier method and was found to be an independent risk factor that influences the postoperative survival time of NSCLC patients by Cox regression analysis. In conclusion, these data showed that RUNX2 may play an important role in NSCLC tumorigenesis, and RUNX2 might serve as a novel prognostic marker in NSCLC.


RUNX2 NSCLC Prognosis 



This work was supported by the National Natural Science Foundation of China (No. 81070094 and No. 30972964).

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. doi: 10.3322/caac.20107.PubMedCrossRefGoogle Scholar
  2. 2.
    Soria JC, Kim ES, Fayette J, Lantuejoul S, Deutsch E, Hong WK. Chemoprevention of lung cancer. Lancet Oncol. 2003;4:659–69.PubMedCrossRefGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300. doi: 10.3322/caac.20073.PubMedCrossRefGoogle Scholar
  4. 4.
    Chimge NO, Baniwal SK, Little GH, Chen YB, Kahn M, Tripathy D, et al. Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Res. 2011;13(6):R127. doi: 10.1186/bcr3073.PubMedCrossRefGoogle Scholar
  5. 5.
    Slattery ML, Lundgreen A, Herrick JS, Caan BJ, Potter JD, Wolff RK. Associations between genetic variation in RUNX1, RUNX2, RUNX3, MAPK1 and eIF4E and risk of colon and rectal cancer: additional support for a TGF-β-signaling pathway. Carcinogenesis. 2011;32(3):318–26. doi: 10.1093/carcin/bgq245.PubMedCrossRefGoogle Scholar
  6. 6.
    Little GH, Noushmehr H, Baniwal SK, Berman BP, Coetzee GA, Frenkel B. Genome-wide Runx2 occupancy in prostate cancer cells suggests a role in regulating secretion. Nucleic Acids Res. 2012;40:3538–47. doi: 10.1093/nar/gkr1219.PubMedCrossRefGoogle Scholar
  7. 7.
    Martin JW, Zielenska M, Stein GS, van Wijnen AJ, Squire JA. The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma. 2011;2011:282745. doi: 10.1155/2011/282745.PubMedCrossRefGoogle Scholar
  8. 8.
    van der Deen M, Akech J, Lapointe D, Gupta S, Young DW, Montecino MA, et al. Genomic promoter occupancy of runt-related transcription factor RUNX2 in osteosarcoma cells identifies genes involved in cell adhesion and motility. J Biol Chem. 2012;287:4503–17. doi: 10.1074/jbc.M111.287771.PubMedCrossRefGoogle Scholar
  9. 9.
    Chua CW, Chiu YT, Yuen HF, Chan KW, Man K, Wang X, et al. Suppression of androgen-independent prostate cancer cell aggressiveness by FTY720: validating Runx2 as a potential antimetastatic drug screening platform. Clin Cancer Res. 2009;15:4322–35. doi: 10.1158/1078-0432.CCR-08-3157.PubMedCrossRefGoogle Scholar
  10. 10.
    Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 2005;25:8581–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Kayed H, Jiang X, Keleg S, Jesnowski R, Giese T, Berger MR, et al. Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer. 2007;97:1106–15. doi: 10.1038/sj.bjc.6603984.PubMedCrossRefGoogle Scholar
  12. 12.
    Sase T, Suzuki T, Miura K, Shiiba K, Sato I, Nakamura Y, et al. Runt-related transcription factor 2 in human colon carcinoma: a potent prognostic factor associated with estrogen receptor. Int J Cancer. 2012;131:2284–93. doi: 10.1002/ijc.27525.PubMedCrossRefGoogle Scholar
  13. 13.
    Dalle Carbonare L, Frigo A, Francia G, Davì MV, Donatelli L, Stranieri C, et al. Runx2 mRNA expression in the tissue, serum, and circulating non-hematopoietic cells of patients with thyroid cancer. J Clin Endocrinol Metab. 2012;97:E1249–56. doi: 10.1210/jc.2011-2624.PubMedCrossRefGoogle Scholar
  14. 14.
    Tandon M, Gokul K, Ali SA, Chen Z, Lian J, Stein GS, et al. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer. 2012;11:27. doi: 10.1186/1476-4598-11-27.PubMedCrossRefGoogle Scholar
  15. 15.
    Li W, Yu CP, Xia JT, Zhang L, Weng GX, Zheng HQ, et al. Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients. Clin Cancer Res. 2009;15:1393–9. doi: 10.1158/1078-0432.CCR-08-1158.PubMedCrossRefGoogle Scholar
  16. 16.
    Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe. 1987;8:138–40.PubMedGoogle Scholar
  17. 17.
    Blyth K, Vaillant F, Jenkins A, McDonald L, Pringle MA, Huser C, et al. Runx2 in normal tissues and cancer cells: a developing story. Blood Cells Mol Dis. 2010;45:117–23. doi: 10.1016/j.bcmd.2010.05.007.PubMedCrossRefGoogle Scholar
  18. 18.
    Purcell DJ, Khalid O, Ou CY, Little GH, Frenkel B, Baniwal SK, et al. Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. J Cell Biochem. 2012;113:2406–14. doi: 10.1002/jcb.24114.PubMedCrossRefGoogle Scholar
  19. 19.
    Underwood KF, D'Souza DR, Mochin-Peters M, Pierce AD, Kommineni S, Choe M, et al. Regulation of RUNX2 transcription factor–DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. J Bone Miner Res. 2012;27:913–25. doi: 10.1002/jbmr.1504.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee KN, Jang WG, Kim EJ, Oh SH, Son HJ, Kim SH, et al. Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity. J Biol Chem. 2012;287:18888–99. doi: 10.1074/jbc.M111.311878.PubMedCrossRefGoogle Scholar
  21. 21.
    Li Y, Ge C, Long JP, Begun DL, Rodriguez JA, Goldstein SA, et al. Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor. J Bone Miner Res. 2012;27:1263–74. doi: 10.1002/jbmr.1574.PubMedCrossRefGoogle Scholar
  22. 22.
    Park ES, Lind AK, Dahm-Kähler P, Brännström M, Carletti MZ, Christenson LK, et al. RUNX2 transcription factor regulates gene expression in luteinizing granulosa cells of rat ovaries. Mol Endocrinol. 2010;24:846–58. doi: 10.1210/me.2009-0392.PubMedCrossRefGoogle Scholar
  23. 23.
    Tonomoto Y, Tachibana M, Dhar DK, Onoda T, Hata K, Ohnuma H, et al. Differential expression of RUNX genes in human esophageal squamous cell carcinoma: downregulation of RUNX3 worsens patient prognosis. Oncology. 2007;73:346–56. doi: 10.1159/000135350.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SH, Che X, Jeong JH, Choi JY, Lee YJ, Lee YH, et al. Runx2 protein stabilizes hypoxia-inducible factor-1α through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem. 2012;287:14760–71. doi: 10.1074/jbc.M112.340232.PubMedCrossRefGoogle Scholar
  25. 25.
    Edvardsson K, Ström A, Jonsson P, Gustafsson JÅ, Williams C. Estrogen receptor β induces antiinflammatory and antitumorigenic networks in colon cancer cells. Mol Endocrinol. 2011;25:969–79. doi: 10.1210/me.2010-0452.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Hong Li
    • 1
  • Ren-Jie Zhou
    • 2
  • Guo-Qiang Zhang
    • 3
  • Jian-Ping Xu
    • 4
  1. 1.Department of Anesthesiology, Xinqiao HospitalThird Military Medical UniversityChongqingChina
  2. 2.Department of Emergency, Xinqiao HospitalThird Military Medical UniversityChongqingChina
  3. 3.Department of Thoracic Surgery, Xinqiao HospitalThird Military Medical UniversityChongqingChina
  4. 4.Department of Pathology, Xinqiao HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations