Advertisement

Tumor Biology

, Volume 34, Issue 3, pp 1579–1588 | Cite as

Overexpression of microRNA-21 regulating PDCD4 during tumorigenesis of liver fluke-associated cholangiocarcinoma contributes to tumor growth and metastasis

  • P. Chusorn
  • N. Namwat
  • W. Loilome
  • A. Techasen
  • C. Pairojkul
  • N. Khuntikeo
  • A. Dechakhamphu
  • C. Talabnin
  • W. Chan-On
  • C. K. Ong
  • B. T. Teh
  • P. Yongvanit
Research Article

Abstract

MicroRNA, an endogenous noncoding RNA modulating gene expression, is a key molecule that by its dysregulation plays roles in inflammatory-driven carcinogenesis. This study aimed to investigate the role of oncomiR miR-21 and its target, the programmed cell death 4 (PDCD4) in tumor growth and metastasis of the liver fluke Opisthorchis viverrini-associated cholangiocarcinoma (CCA). The expression levels of miR-21 and PDCD4 were analyzed using the TaqMan miRNA expression assay and immunohistochemistry in liver tissues of both O. viverrini plus N-nitrosodimethylamine (NDMA)-treated hamsters and human CCA samples (n = 23 cases). The functional assay for miR-21 was performed in CCA cell lines by the anti-miR-21 and pre-miR-21 transfection procedures. The peak of miR-21 levels were reached at 2 (hyperplastic lesions) and 6 (CCA) months of the O. viverrini plus NDMA-induced group and had a reverse response with its target PDCD4 proteins. In human CCA, miR-21 was overexpressed in tumor tissues when compared with nontumor tissues (P = 0.0034) and had a negative correlation with PDCD4 protein (P = 0.026). It was also found that high expression of miR-21 was significantly correlated with shorter survival (P < 0.05) and lymph node metastasis (P = 0.037) of CCA patients. Transient transfection of pre-miR-21 reduced the PDCD4 level and resulted in an increase of M213 CCA cell growth and wound-induced migration ability. These results indicated that miR-21 plays a role in the carcinogenesis and metastasis of O. viverrini-associated CCA by suppressing the function of PDCD4. Modulation of aberrantly expressed miR-21 may be a useful strategy to inhibit tumor cell phenotypes or improve response to chemotherapy.

Keywords

Cholangiocarcinoma miR-21 PDCD4 Cell proliferation Metastasis 

Notes

Acknowledgments

This study was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (grant no PHD/0226/2551) to PC and PY, the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHeP-GMS) Khon Kaen University to PY, a grant from Khon Kaen University to NN, a grant from a Mid-Career Grant (RSA5280007), Thailand Research Fund, to NN and a grant from the Faculty of Medicine, Khon Kaen University to PY.

References

  1. 1.
    Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet. 2005;366(9493):1303–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24(2):115–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Patel T. Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol. 2006;3(1):33–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, et al. Liver fluke induces cholangiocarcinoma. PLoS Med. 2007;4(7):e201.PubMedCrossRefGoogle Scholar
  5. 5.
    Fava G. Molecular mechanisms of cholangiocarcinoma. World J Gastrointest Pathophysiol. 2010;1(1):12–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Jaiswal M, LaRusso NF, Shapiro RA, Billiar TR, Gores GJ. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology. 2001;120(1):190–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Jaiswal M, LaRusso NF, Gores GJ. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G626–34.PubMedGoogle Scholar
  8. 8.
    Sripa B, Bethony JM, Sithithaworn P, Kaewkes S, Mairiang E, Loukas A, et al. Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop. 2011;120 Suppl 1:S158–68.PubMedCrossRefGoogle Scholar
  9. 9.
    Songserm N, Prasongwattana J, Sithithaworn P, Sripa B, Pipitkool V. Cholangiocarcinoma in experimental hamsters with long-standing Opisthorchis viverrini infection. Asian Pac J Cancer Prev. 2009;10(2):299–302.PubMedGoogle Scholar
  10. 10.
    Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol. 2008;24(3):349–56.PubMedCrossRefGoogle Scholar
  11. 11.
    Blechacz BR, Gores GJ. Cholangiocarcinoma. Clin Liver Dis. 2008;12(1):131–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Tesana S, Takahashi Y, Sithithaworn P, Ando K, Sakakura T, Yutanawiboonchai W, et al. Ultrastructural and immunohistochemical analysis of cholangiocarcinoma in immunized Syrian golden hamsters infected with Opisthorchis viverrini and administered with dimethylnitrosamine. Parasitol Int. 2000;49(3):239–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Sithithaworn P, Haswell-Elkins MR, Mairiang P, Satarug S, Mairiang E, Vatanasapt V, et al. Parasite-associated morbidity: liver fluke infection and bile duct cancer in northeast Thailand. Int J Parasitol. 1994;24(6):833–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Pasquinelli AE, Hunter S, Bracht J. MicroRNAs: a developing story. Curr Opin Genet Dev. 2005;15(2):200–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.PubMedCrossRefGoogle Scholar
  17. 17.
    Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.PubMedCrossRefGoogle Scholar
  18. 18.
    Yao Q, Xu H, Zhang QQ, Zhou H, Qu LH. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun. 2009;388(3):539–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010;411(11–12):846–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y, et al. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology. 2009;49(5):1595–601.PubMedCrossRefGoogle Scholar
  21. 21.
    Qi L, Bart J, Tan LP, Platteel I, Sluis T, Huitema S, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163.PubMedCrossRefGoogle Scholar
  22. 22.
    Selcuklu SD, Donoghue MT, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009;37(Pt 4):918–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Schetter AJ, Nguyen GH, Bowman ED, Mathe EA, Yuen ST, Hawkes JE, et al. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res. 2009;15(18):5878–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31(1):37–49.PubMedCrossRefGoogle Scholar
  25. 25.
    Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110(4):1330–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Hata A, Davis BN. Control of microRNA biogenesis by TGFbeta signaling pathway—a novel role of Smads in the nucleus. Cytokine Growth Factor Rev. 2009;20(5–6):517–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282(19):14328–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Song B, Wang C, Liu J, Wang X, Lv L, Wei L, et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res. 2010;29:29.PubMedCrossRefGoogle Scholar
  31. 31.
    Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28(17):5369–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, Cmarik JL, et al. A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene. 2001;20(6):669–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y, et al. MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett. 2008;272(2):197–205.PubMedCrossRefGoogle Scholar
  34. 34.
    Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283(2):1026–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu C, Yu J, Yu S, Lavker RM, Cai L, Liu W, et al. MicroRNA-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. J Hepatol. 2010;53(1):98–107.PubMedCrossRefGoogle Scholar
  36. 36.
    Allgayer H. Pdcd4, a colon cancer prognostic that is regulated by a microRNA. Crit Rev Oncol Hematol. 2010;73(3):185–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH. A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol. 2004;24(9):3894–906.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang H, Ozaki I, Mizuta T, Hamajima H, Yasutake T, Eguchi Y, et al. Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepatocellular carcinoma. Oncogene. 2006;25(45):6101–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang HS, Matthews CP, Clair T, Wang Q, Baker AR, Li CC, et al. Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol. 2006;26(4):1297–306.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang Q, Sun Z, Yang HS. Downregulation of tumor suppressor Pdcd4 promotes invasion and activates both beta-catenin/Tcf and AP-1-dependent transcription in colon carcinoma cells. Oncogene. 2008;27(11):1527–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Q, Sun ZX, Allgayer H, Yang HS. Downregulation of E-cadherin is an essential event in activating beta-catenin/Tcf-dependent transcription and expression of its target genes in Pdcd4 knockdown cells. Oncogene. 2010;29(1):128–38.PubMedCrossRefGoogle Scholar
  42. 42.
    Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006;130(7):2113–29.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen L, Yan HX, Yang W, Hu L, Yu LX, Liu Q, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol. 2009;50(2):358–69.PubMedCrossRefGoogle Scholar
  44. 44.
    Dechakhamphu S, Pinlaor S, Sitthithaworn P, Bartsch H, Yongvanit P. Accumulation of miscoding etheno-DNA adducts and highly expressed DNA repair during liver fluke-induced cholangiocarcinogenesis in hamsters. Mutat Res. 2010;691(1–2):9–16.PubMedGoogle Scholar
  45. 45.
    Maruyama M, Kobayashi N, Westerman KA, Sakaguchi M, Allain JE, Totsugawa T, et al. Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation. 2004;77(3):446–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Pinlaor S, Hiraku Y, Ma N, Yongvanit P, Semba R, Oikawa S, et al. Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini: a model of inflammation-mediated carcinogenesis. Nitric Oxide. 2004;11(2):175–83.PubMedCrossRefGoogle Scholar
  47. 47.
    Bhamarapravati N, Thammavit W, Vajrasthira S. Liver changes in hamsters infected with a liver fluke of man, Opisthorchis viverrini. AmJTrop Med Hyg. 1978;27(4):787–94.Google Scholar
  48. 48.
    Jittimanee J, Sermswan RW, Puapairoj A, Maleewong W, Wongratanacheewin S. Cytokine expression in hamsters experimentally infected with Opisthorchis viverrini. Parasite Immunol. 2007;29(3):159–67.PubMedCrossRefGoogle Scholar
  49. 49.
    Prakobwong S, Pinlaor S, Yongvanit P, Sithithaworn P, Pairojkul C, Hiraku Y. Time profiles of the expression of metalloproteinases, tissue inhibitors of metalloproteases, cytokines and collagens in hamsters infected with Opisthorchis viverrini with special reference to peribiliary fibrosis and liver injury. Int J Parasitol. 2009;39(7):825–35.PubMedCrossRefGoogle Scholar
  50. 50.
    Sripa B, Thinkhamrop B, Mairiang E, Laha T, Kaewkes S, Sithithaworn P, et al. Elevated plasma IL-6 associates with increased risk of advanced fibrosis and cholangiocarcinoma in individuals infected by Opisthorchis viverrini. PLoS Negl Trop Dis. 2012;6(5):e1654.PubMedCrossRefGoogle Scholar
  51. 51.
    Sripa B, Mairiang E, Thinkhamrop B, Laha T, Kaewkes S, Sithithaworn P, et al. Advanced periductal fibrosis from infection with the carcinogenic human liver fluke Opisthorchis viverrini correlates with elevated levels of interleukin-6. Hepatology. 2009;50(4):1273–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Prakobwong S, Yongvanit P, Hiraku Y, Pairojkul C, Sithithaworn P, Pinlaor P, et al. Involvement of MMP-9 in peribiliary fibrosis and cholangiocarcinogenesis via Rac1-dependent DNA damage in a hamster model. Int J Cancer. 2010;127(11):2576–87.PubMedCrossRefGoogle Scholar
  53. 53.
    Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Zaman MS, Shahryari V, Deng G, Thamminana S, Saini S, Majid S, et al. Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One. 2012;7(2):e31060.PubMedCrossRefGoogle Scholar
  55. 55.
    Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer. 2011;30(6):371–80.PubMedGoogle Scholar
  56. 56.
    Yamamichi N, Shimomura R, Inada K, Sakurai K, Haraguchi T, Ozaki Y, et al. Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res. 2009;15(12):4009–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18(3):350–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88(12):1358–66.PubMedCrossRefGoogle Scholar
  59. 59.
    Namwat N, Puetkasichonpasutha J, Loilome W, Yongvanit P, Techasen A, Puapairoj A, et al. Downregulation of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is associated with enhanced expression of matrix metalloproteinases and cholangiocarcinoma metastases. J Gastroenterol. 2011;46(5):664–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu CZ, Liu W, Zheng Y, Su JM, Li JJ, Yu L, et al. PTEN and PDCD4 are bona fide targets of microRNA-21 in human cholangiocarcinoma. Chin Med Sci J. 2012;27(2):65–72.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • P. Chusorn
    • 1
    • 4
  • N. Namwat
    • 1
    • 4
  • W. Loilome
    • 1
    • 4
  • A. Techasen
    • 1
    • 4
    • 5
  • C. Pairojkul
    • 2
    • 4
  • N. Khuntikeo
    • 3
    • 4
  • A. Dechakhamphu
    • 6
  • C. Talabnin
    • 7
  • W. Chan-On
    • 8
  • C. K. Ong
    • 8
  • B. T. Teh
    • 8
  • P. Yongvanit
    • 1
    • 4
  1. 1.Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of PathologyKhon Kaen UniversityKhon KaenThailand
  3. 3.Department of Surgery, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
  4. 4.Liver Fluke and Cholangiocarcinoma Research CenterKhon Kaen UniversityKhon KaenThailand
  5. 5.Faculty of Associated Medical SciencesKhon Kaen UniversityKhon KaenThailand
  6. 6.Faculty of Thai Traditional and Alternative MedicineUbonratchathani Rajabhat UniversityUbonratchathaniThailand
  7. 7.School of Biochemistry, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  8. 8.NCCS-VARI Translational Research LaboratoryNational Cancer Centre SingaporeSingaporeSingapore

Personalised recommendations