Skip to main content

Advertisement

Log in

RNAi-mediated gene silencing of vascular endothelial growth factor-C inhibits tumor lymphangiogenesis and growth of gastric cancer in vivo in mice

  • Research Article
  • Published:
Tumor Biology

Abstract

Overexpression of vascular endothelial growth factor-C (VEGF-C) has been implicated as a critical molecular signal in tumor development by promoting intratumoral lymphangiogenesis. The aim of this study was to explore whether small hairpin RNA (shRNA) targeting VEGF-C could inhibit gastric cancer lymphangiogenesis and tumor growth. Plasmid-mediated expression of VEGF-C–shRNA was employed to silence VEGF-C gene expression in human SGC-7901 cell lines. The inhibition of the target gene expression was quantified by real-time quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. In vitro, the cell viability was determined by MTT assay, flow cytometry analysis, and migration assay. After VEGF-C knockdown was confirmed, the stable cells were inoculated into nude mice. Tumor growth, lymph vessel density (LVD), and microvascular density were compared for mice administered either VEGF-C–shRNA or control. VEGF-C–shRNA causes effective and specific downregulation of VEGF-C expression (P < 0.05). The migration activity of SGC-7901 cells was attenuated in vitro (P < 0.05). Tumor growth rate and LVD was suppressed in vivo (P < 0.05). VEGF-C–shRNA effectively suppressed gastric cancer cell migration in vivo, retards tumorigenicity, and lymphangiogenesis in nude mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108. doi:10.3322/canjclin.55.2.74.

    Article  PubMed  Google Scholar 

  2. Hohenberger P, Gretschel S. Gastric cancer. Lancet. 2003;362(9380):305–15. doi:10.1016/s0140-6736(03)13975-x.

    Article  PubMed  Google Scholar 

  3. Kurtz JE, Dufour P. Evolving standards of care in advanced gastric cancer. Future Oncol. 2011;7(12):1441–50. doi:10.2217/fon.11.115.

    Article  PubMed  Google Scholar 

  4. Lordick F, Schumacher G, Becker-Schiebe M. Gastric cancer—still many questions to be solved. MEMO. 2011;4(2):71–4.

    Article  Google Scholar 

  5. Delaunoit T. Latest developments and emerging treatment options in the management of stomach cancer. Cancer Manag Res. 2011;3:257–66. doi:10.2147/CMR.S12713.

    Article  PubMed  Google Scholar 

  6. Stoffel A. Targeted therapies for solid tumors: current status and future perspectives. BioDrugs. 2010;24(5):303–16. doi:10.2165/11535880-000000000-00000.

    Article  PubMed  CAS  Google Scholar 

  7. Nagahashi M, Ramachandran S, Rashid OM, Takabe K. Lymphangiogenesis: a new player in cancer progression. World J Gastroenterol. 2010;16(32):4003–12.

    Article  PubMed  CAS  Google Scholar 

  8. Da MX, Wu XT, Wang J, Guo TK, Zhao ZG, Luo T, et al. Expression of cyclooxygenase-2 and vascular endothelial growth factor-C correlates with lymphangiogenesis and lymphatic invasion in human gastric cancer. Arch Med Res. 2008;39(1):92–9. doi:s0140-6736(03)13975-x/j.arcmed.2007.06.021.

    Article  PubMed  CAS  Google Scholar 

  9. Zhu P, Zhang J, Chen Q, Wang J, Wang Y. Expression of vascular endothelial growth factor-C in gastric carcinoma and the effect of its antisense gene transfection on the proliferation of human gastric cancer cell line SGC-7901. Am J Surg. 2012;204(1):78–83. doi:s0140-6736(03)13975-x/j.amjsurg.2011.06.056.

    Article  PubMed  CAS  Google Scholar 

  10. Tsutsumi S, Kuwano H, Shimura T, Morinaga N, Mochiki E, Asao T. Vascular endothelial growth factor C (VEGF-C) expression in pT2 gastric cancer. Hepatogastroenterology. 2005;52(62):629–32.

    PubMed  CAS  Google Scholar 

  11. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001;61(5):1786–90.

    PubMed  CAS  Google Scholar 

  12. Shi X, Chen G, Xing H, Weng D, Bai X, Ma D. VEGF-C, VEGFR-3, and COX-2 enhances growth and metastasis of human cervical carcinoma cell lines in vitro. Oncol Rep. 2007;18(1):241–7.

    PubMed  CAS  Google Scholar 

  13. Ochi N, Matsuo Y, Sawai H, Yasuda A, Takahashi H, Sato M, et al. Vascular endothelial growth factor-C secreted by pancreatic cancer cell line promotes lymphatic endothelial cell migration in an in vitro model of tumor lymphangiogenesis. Pancreas. 2007;34(4):444–51.

    Article  PubMed  CAS  Google Scholar 

  14. Morita H, Ishikawa Y, Akishima-Fukasawa Y, Ito K, Akasaka Y, Nishimura C, et al. Histopathological predictor for regional lymph node metastasis in gastric cancer. Virchows Arch. 2009;454(2):143–51. doi:10.1007/s00428-008-0717-3.

    Article  PubMed  Google Scholar 

  15. Gao P, Zhou GY, Zhang QH, Su ZX, Zhang TG, Xiang L, et al. Lymphangiogenesis in gastric carcinoma correlates with prognosis. J Pathol. 2009;218(2):192–200. doi:10.1002/path.2523.

    Article  PubMed  Google Scholar 

  16. Schoppmann S, Fenzl A, Schindl M, Bachleitner-Hofmann T, Nagy K, Gnant M, et al. Hypoxia inducible factor-1α correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Tr. 2006;99(2):135–41. doi:10.1007/s10549-006-9190-3.

    Article  CAS  Google Scholar 

  17. Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood. 2002;99(6):2179–84.

    Article  PubMed  CAS  Google Scholar 

  18. Moehler M, Mueller A, Hartmann JT, Ebert MP, Al-Batran SE, Reimer P, et al. An open-label, multicentre biomarker-oriented AIO phase II trial of sunitinib for patients with chemo-refractory advanced gastric cancer. Eur J Cancer. 2011;47(10):1511–20. doi:s0140-6736(03)13975-x/j.ejca.2011.04.006.

    Article  PubMed  CAS  Google Scholar 

  19. Grishok A, Tabara H, Mello CC. Genetic requirements for inheritance of RNAi in C. elegans. Science. 2000;287(5462):2494–7. doi:10.1126/science.287.5462.2494.

    Article  PubMed  CAS  Google Scholar 

  20. Pennati M, Millo E, Gandellini P, Folini M, Zaffaroni N. RNA interference-mediated validation of surviving and Apollon/BRUCE as new therapeutic targets for cancer therapy. Curr Top Med Chem. 2012;12(2):69–78. doi:10.1007/978-1-60327-547-7_15.

    Article  PubMed  CAS  Google Scholar 

  21. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci. 2001;114(24):4557–65.

    PubMed  CAS  Google Scholar 

  22. Sui G, Soohoo C, el Affar B, Gay F, Shi Y, Forrester WC. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA. 2002;99(8):5515–20. doi:10.1073/pnas.082117599.

    Article  PubMed  CAS  Google Scholar 

  23. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA. 2002;99(9):6047–52.

    Article  PubMed  CAS  Google Scholar 

  24. Phalon C, Rao DD, Nemunaitis J. Potential use of RNA interference in cancer therapy. Expert Rev Mol Med. 2010;12:e26. doi:10.1017/S1462399410001584.

    Article  PubMed  Google Scholar 

  25. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001;20(4):672–82. doi:10.1093/emboj/20.4.672.

    Article  PubMed  CAS  Google Scholar 

  26. Enholm B, Paavonen K, Ristimäki A, Kumar V, Gunji Y, Klefstrom J, et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene. 1997;14(20):2475–83.

    Article  PubMed  CAS  Google Scholar 

  27. Li H, Adachi Y, Yamamoto H, Min Y, Ohashi H, Ii M, et al. Insulin-like growth factor-I receptor blockade reduces tumor angiogenesis and enhances the effects of bevacizumab for a human gastric cancer cell line, MKN45. Cancer. 2011;117(14):3135–47. doi:10.1002/cncr.25893.

    Article  PubMed  CAS  Google Scholar 

  28. Katsuta M, Miyashita M, Makino H, Nomura T, Shinji S, Yamashita K, et al. Correlation of hypoxia inducible factor-1 alpha with lymphatic metastasis via vascular endothelial growth factor-C in human esophageal cancer. Exp Mol Pathol. 2005;78(2):123–30. doi:j.yexmp.2004.11.002/j.yexmp.2004.11.002.

    Article  PubMed  CAS  Google Scholar 

  29. Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev. 2009;61(9):746–59. doi:j.yexmp.2004.11.002/j.addr.2009.04.004.

    Article  PubMed  CAS  Google Scholar 

  30. Wang Z, Rao DD, Senzer N, Nemunaitis J. RNA interference and cancer therapy. Pharm Res. 2011;28(12):2983–95. doi:10.1007/s11095-011-0604-5.

    Article  PubMed  CAS  Google Scholar 

  31. Polacheck WJ, Zervantonakis IK, Kamm RD. Tumor cell migration in complex microenvironments. Cell Mol Life Sci. 2012. doi:10.1007/s00018-012-1115-1.

  32. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–65. doi:j.yexmp.2004.11.002/S0092-8674(03)00120-X.

    Article  PubMed  CAS  Google Scholar 

  33. He M, Cheng Y, Li W, Liu QS, Liu JX, Huang JH, et al. Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade. Cancer. 2010;10:1710. doi:10.1186/1471-2407-10-170.

    Google Scholar 

  34. Su JL, Yang PC, Shih JY, Yang CY, Wei LH, Hsieh CY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell. 2006;9(3):209–23. doi:j.yexmp.2004.11.002/j.ccr.2006.02.018.

    Article  PubMed  CAS  Google Scholar 

  35. Zhao R, Liu XQ, Wu XP, Liu YF, Zhang ZY, Yang GY, et al. Vascular endothelial growth factor (VEGF) enhances gastric carcinoma invasiveness via integrin alpha(v)beta6. Cancer Lett. 2010;287(2):150–6. doi:j.yexmp.2004.11.002/j.canlet.2009.06.006.

    Article  PubMed  CAS  Google Scholar 

  36. Guo BL, Zhang YF, Luo GQ, Li LC, Zhang JG. Lentivirus-mediated small interfering RNA targeting VEGF-C inhibited tumor lymphangiogenesis and growth in breast carcinoma. Anat Rec Adv Integr Anat Evol Biol. 2009;292(5):633–9. doi:10.1002/ar.20893.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (grant no.: 30960371).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxu Da.

Additional information

Jibin Yao and Mingxu Da contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Da, M., Guo, T. et al. RNAi-mediated gene silencing of vascular endothelial growth factor-C inhibits tumor lymphangiogenesis and growth of gastric cancer in vivo in mice. Tumor Biol. 34, 1493–1501 (2013). https://doi.org/10.1007/s13277-013-0674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0674-6

Keywords

Navigation