Tumor Biology

, Volume 34, Issue 2, pp 1139–1144 | Cite as

Correlation between Rho-kinase pathway gene expressions and development and progression of glioblastoma multiforme

  • Ibrahim Erkutlu
  • Ahmet Cigiloglu
  • Mehmet Emin Kalender
  • Mehmet Alptekin
  • A. Tuncay Demiryurek
  • Ali Suner
  • Esma Ozkaya
  • Mustafa Ulaslı
  • Celalettin Camcı
Research Article


Glioblastoma multiforme (GBM) is the most common and the most aggressive primary malignant tumor of the brain. Prognostic factors in GBM can be sorted as age, tumor localization, tumor diameter, symptom period and type, the extent of surgery, postoperative tumor volume, and adjuvant radiotherapy and/or chemotherapy status. Besides the interactions between actin microfilaments, microtubules, and intermediate filaments, environmental factors and intracellular signals which regulate them affect the cell invasion. Rho proteins and therefore Rho-kinase activation play important role at these changes. The aim of this study is to evaluate the relationship between the Rho-kinase pathway gene expressions and prognosis in GBM. Ninety-eight patients diagnosed as GBM between 2001 and 2010 were enrolled into the study. RNA was obtained from the paraffinized tumor tissue of the patients with formalin-fixed, paraffin-embedded RNA isolation kit and the mRNA expressions of 26 genes were investigated. There was a statistically significant negative correlation between the ages at the diagnosis and survival. There was a significant relationship between the overexpression of Rho-kinase pathway-related genes LIMK1, CFL1, CFL2, and BCL2 and low expression of MAPK1 gene and the survival of the patients. These results demonstrate for the first time that there is a marked contribution of Rho-kinase pathway-related genes to the progression and survival of the GBM. The expression of these genes may be related to response of multimodal therapy or these parameters could be used to determine possible unresponsive patients before treatment.


Glioblastoma multiforme Rho-kinase LIM-kinase Cofilin 


Conflicts of interest



  1. 1.
    Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery. 1996;39:235–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Berens ME, Rutka JT, Rosenblum ML. Brain tumor epidemiology, growth, and invasion. Neurosurg Clin N Am. 1990;1:1–18.PubMedGoogle Scholar
  4. 4.
    Mahaley Jr MS, Mettlin C, Natarajan N, Laws Jr ER, Peace BB. National survey of patterns of care for brain-tumor patients. J Neurosurg. 1989;71:826–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Surawicz TS, McCarthy BJ, Kupelian V, Jukich PJ, Bruner JM, et al. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990–1994. Neuro Oncol. 1999;1:14–25.PubMedGoogle Scholar
  6. 6.
    Lim DA, Cha S, Mayo MC, Chen MH, Keles E, et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 2007;9:424–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.PubMedCrossRefGoogle Scholar
  8. 8.
    Barker II FG, Chang SM, Gutin PH, et al. Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery. 1998;42:709–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Burns KL, Ueki K, Jhung SL, Koh J, Louis DN. Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas. J Neuropathol Exp Neurol. 1998;57:122–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Katoh K, Kano Y, Amano M, Onishi H, Kaibuchi K, et al. Rho-kinase–mediated contraction of isolated stress fibers. J Cell Biol. 2001;153:569–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Yan B, Chour HH, Peh BK, Lim C, Salto-Tellez M. RhoA protein expression correlates positively with degree of malignancy in astrocytomas. Neurosci Lett. 2006;407:124–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Salhia B, Rutten F, Nakada M, Beaudry C, Berens M, et al. Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res. 2005;65:8792–800.PubMedCrossRefGoogle Scholar
  13. 13.
    Zohrabian VM, Forzani B, Chau Z, Murali R, Jhanwar-Uniyal M. Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res. 2009;29:119–23.PubMedGoogle Scholar
  14. 14.
    Deng L, Li G, Li R, Liu Q, He Q, et al. Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer Biol Ther. 2010;9:875–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhai GG, Malhotra R, Delaney M, Latham D, Nestler U, et al. Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J Neurooncol. 2006;76:227–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Ader I, Delmas C, Bonnet J, Rochaix P, Favre G, et al. Inhibition of Rho pathways induces radiosensitization and oxygenation in human glioblastoma xenografts. Oncogene. 2003;22:8861–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Tabu K, Ohba Y, Suzuki T, Makino Y, Kimura T, et al. Oligodendrocyte lineage transcription factor 2 inhibits the motility of a human glial tumor cell line by activating RhoA. Mol Cancer Res. 2007;5:1099–109.PubMedCrossRefGoogle Scholar
  18. 18.
    Oellers P, Schröer U, Senner V, Paulus W, Thanos S. ROCKs are expressed in brain tumors and are required for glioma-cell migration on myelinated axons. Glia. 2009;57:499–509.PubMedCrossRefGoogle Scholar
  19. 19.
    Nieder C, Grosu AL, Astner S, Molls M. Treatment of unresectable glioblastoma multiforme. Anticancer Res. 2005;25:4605–10.PubMedGoogle Scholar
  20. 20.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRefGoogle Scholar
  21. 21.
    van Genugten JA, Leffers P, Baumert BG, Tjon-A-Fat H, Twijnstra A. Effectiveness of temozolomide for primary glioblastoma multiforme in routine clinical practice. J Neurooncol. 2010;96:249–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Athanassiou H, Synodinou M, Maragoudakis E, Paraskevaidis M, Verigos C, et al. Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme. J Clin Oncol. 2005;23:2372–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer. 1983;52:997–1007.PubMedCrossRefGoogle Scholar
  24. 24.
    Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285:895–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Sumi T, Matsumoto K, Takai Y, Nakamura T. Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J Cell Biol. 1999;147:1519–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Scott RW, Olson MF. LIM kinases: function, regulation and association with human disease. J Mol Med (Berl). 2007;85:555–68.CrossRefGoogle Scholar
  27. 27.
    Gunnersen JM, Spirkoska V, Smith PE, Danks RA, Tan SS. Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Glia. 2000;32:146–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Yap CT, Simpson TI, Pratt T, Price DJ, Maciver SK. The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motil Cytoskeleton. 2005;60:153–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.PubMedCrossRefGoogle Scholar
  30. 30.
    Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27:6398–406.PubMedCrossRefGoogle Scholar
  31. 31.
    Newcomb EW, Bhalla SK, Parrish CL, Hayes RL, Cohen H, et al. bcl-2 protein expression in astrocytomas in relation to patient survival and p53 gene status. Acta Neuropatho. 1997;94:369–75.CrossRefGoogle Scholar
  32. 32.
    Newcomb EW, Cohen H, Lee SR, Bhalla SK, Bloom J, et al. Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes. Brain Pathol. 1998;8:655–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Rieger L, Weller M, Bornemann A, Schabet M, Dichgans J, et al. BCL-2 family protein expression in human malignant glioma: a clinical-pathological correlative study. J Neurol Sci. 1998;155:68–75.PubMedCrossRefGoogle Scholar
  34. 34.
    Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003;22:395–403.PubMedCrossRefGoogle Scholar
  35. 35.
    Mandell JW, Hussaini IM, Zecevic M, Weber MJ, VandenBerg SR. In situ visualization of intratumor growth factor signaling: immunohistochemical localization of activated ERK/MAP kinase in glial neoplasms. Am J Pathol. 1998;153:1411–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Mawrin C, Diete S, Treuheit T, Kropf S, Vorwerk CK, et al. Prognostic relevance of MAPK expression in glioblastoma multiforme. Int J Oncol. 2003;23:641–8.PubMedGoogle Scholar
  37. 37.
    Cuevas P, Díaz-González D, García-Martín-Córdova C, Sánchez I, Lozano RM, et al. Dobesilate diminishes activation of the mitogen-activated protein kinase ERK1/2 in glioma cells. J Cell Mol Med. 2006;10:225–30.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Ibrahim Erkutlu
    • 1
  • Ahmet Cigiloglu
    • 2
  • Mehmet Emin Kalender
    • 3
    • 6
  • Mehmet Alptekin
    • 1
  • A. Tuncay Demiryurek
    • 4
  • Ali Suner
    • 3
  • Esma Ozkaya
    • 5
  • Mustafa Ulaslı
    • 5
  • Celalettin Camcı
    • 3
  1. 1.Department of Neurosurgery, School of MedicineGaziantep UniversityGaziantepTurkey
  2. 2.Department of Internal Medicine, School of MedicineGaziantep UniversityGaziantepTurkey
  3. 3.Division of Medical Oncology, Department of Internal Medicine, School of Medicine, Gaziantep Oncology HospitalGaziantep UniversityGaziantepTurkey
  4. 4.Department of Medical Pharmacology, School of MedicineGaziantep UniversityGaziantepTurkey
  5. 5.Department of Medical Biology, School of MedicineGaziantep UniversityGaziantepTurkey
  6. 6.Department of Medical Oncology, School of Medicine, Gaziantep Oncology HospitalGaziantep UniversityGaziantepTurkey

Personalised recommendations