Tumor Biology

, Volume 34, Issue 2, pp 1119–1129 | Cite as

The curcumin analog DM-1 induces apoptotic cell death in melanoma

  • Fernanda Faião-Flores
  • José Agustín Quincoces Suarez
  • Silvya Stuchi Maria-Engler
  • Vanessa Soto-Cerrato
  • Ricardo Pérez-Tomás
  • Durvanei Augusto Maria
Research Article


The main difficulty in the successful treatment of metastatic melanoma is that this type of cancer is known to be resistant to chemotherapy. Chemotherapy remains the treatment of choice, and dacarbazine (DTIC) is the best standard treatment. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and antimetastatic properties. The objective of this study was to evaluate the signaling pathways involved in melanoma cell death after treatment with DM-1 compared to the standard agent for melanoma treatment, DTIC. Cell death was evaluated by flow cytometry for annexin V and iodide propide, cleaved caspase 8, and TNF-R1 expression. Hoechst 33342 staining was evaluated by fluorescent microscopy; lipid peroxidation and cell viability (MTT) were evaluated by colorimetric assays. The antiproliferative effects of the drugs were evaluated by flow cytometry for cyclin D1 and Ki67 expression. Mice bearing B16F10 melanoma were treated with DTIC, DM-1, or both therapies. DM-1 induced significant apoptosis as indicated by the presence of cleaved caspase 8 and an increase in TNF-R1 expression in melanoma cells. Furthermore, DM-1 had antiproliferative effects in this the same cell line. DTIC caused cell death primarily by necrosis, and a smaller melanoma cell population underwent apoptosis. DTIC induced oxidative stress and several physiological changes in normal melanocytes, whereas DM-1 did not significantly affect the normal cells. DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 monotherapy or in combination with DTIC, besides survival rate increase. Altogether, these data confirm DM-1 as a chemotherapeutic agent with effective tumor control properties and a lower incidence of side effects in normal cells compared to DTIC.


Melanoma Dacarbazine (DTIC) DM-1 Curcumin analog Apoptosis Synergism 



The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2008/56397-8, 2008/58817-4, and 2011/50435-8), the Spanish government, and the European Union (FIS-PI10/00338) for their financial support.

Conflicts of interest



  1. 1.
    Garbe C, Leiter U. Melanoma epidemiology and trends. Clin Dermatol. 2009;27:3–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Jilaveanu LB, Aziz SA, Kluger HM. Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol. 2009;27:614–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62:10–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Bröcker EB, Grabbe S, Rittgen W, Edler L, Sucker A, Zimpfer-Rechner C, Berger T, Kamarashev J, Burg G, Jonuleit H, Tüttenberg A, Becker JC, Keikavoussi P, Kämpgen E, Schuler G. DC study group of the DeCOG. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17:563–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Eigentler TK, Caroli UM, Radny P, Garbe C. Palliative treatment of disseminated malignant melanoma: a systemic review of 41 randomised clinical trials. Lancet Oncol. 2003;4:748–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Dean E, Lorigan P. Advances in the management of melanoma: targeted therapy, immunotherapy and future directions. Expert Rev Anticancer Ther. 2012;12:1437–48.PubMedCrossRefGoogle Scholar
  8. 8.
    Rudolph BM, Groffik A, Stanger C, Loquai C, Grabbe S. Systemic therapy for malignant melanoma. Hautarzt. 2012;63:885–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Lillehammer T, Engesaeter BO, Prasmickaite L, Maelandsmo GM, Fodstad O, Engebraaten O. Combined treatment with Ad-hTRAIL and DTIC or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines. J Gene Med. 2007;9:440–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Carvalho FR, Vassão RC, Nicoletti MA, Maria DA. Effect of Curcuma zedoaria crude extract against tumor progression and immunomodulation. J Venom Anim Toxins Incl Trop Dis. 2010;16:324–41.CrossRefGoogle Scholar
  11. 11.
    Abusnina A, Keravis T, Yougbaré I, Bronner C, Lugnier C. Anti-proliferative effect of curcumin on melanoma cells is mediated by PDE1A inhibition that regulates the epigenetic integrator UHRF1. Mol Nutr Food Res. 2011;55:1677–89.PubMedCrossRefGoogle Scholar
  12. 12.
    Rivera-Espinoza Y, Muriel P. Pharmacological actions of curcumin in liver diseases or damage. Liver Int. 2009;29:1457–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Bisht S, Maitra A. Systemic delivery of curcumin: 21st century solutions for an ancient conundrum. Curr Drug Discov Technol. 2009;6:192–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Faião-Flores F, Suarez JA, Pardi PC, Maria DA. DM-1, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate: a curcumin analog with a synergic effect in combination with paclitaxel in breast cancer treatment. Tumour Biol. 2012;33:775–85.PubMedCrossRefGoogle Scholar
  16. 16.
    Faião-Flores F, Pardi PC, Santos RP, Rando DG, Quincoces JAP, Maria DA. Antiproliferative and antimetastatic activity of DM-1, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate, in B16F10 melanoma. Appl Cancer Res. 2008;28:72–9.Google Scholar
  17. 17.
    Brohem CA, Massaro RR, Tiago M, Marinho CE, Jasiulionis MG, de Almeida RL, Rivelli DP, Albuquerque RC, de Oliveira TF, de Melo Loureiro AP, Okada S, Soengas MS, de Moraes Barros SB, Maria-Engler SS. Proteasome inhibition and ROS generation by 4-nerolidylcatechol induces melanoma cell death. Pigment Cell Melanoma Res. 2012;25:354–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Quincoces Suarez JA, Rando DG, Maria DA, Pardi P, Martins C, De Souza P. Methods to prepare penta-1,4-dien-3-ones and substituted cyclohexanones and derivatives and derivatives with antitumoral and antiparasitic properties, the compounds and their uses. Brazilian Patent PI 0602640–0 (06.07.2006); PCT/ BR2007/000175 (06.07.2007); WO 2008/003155.Google Scholar
  19. 19.
    Quincoces Suarez JA, Maria DA, Faião-Flores F, Rando DG, Santos RP, Pardi P. Pharmaceutical composition and use of the pharmaceutical composition for the treatment, prophylaxis or prevention of neoplastic diseases in human and animals. Brazilian Patent: PI 0902039–0; 09/06/2009; PCTBR2009/000375; 11.11.2009; WO 2010/142007; 16/12/2010.Google Scholar
  20. 20.
    Quincoces Suarez J, Rando DG, Santos RP, Gonçalves CP, Ferreira E, Carvalho J, Kohn L, Maria DA, Faião-Flores F, Michalik D, Marcucci MC, Vogel C. New antitumoral agents I: in vitro anticancer activity and in vivo acute toxicity of synthetic 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one and derivatives. Bioorg Med Chem. 2010;18:6275–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng X, Xiao Y, Wang X, Wang P, Li H, Yan H, Liu Q. Anti-tumor and pro-apoptotic activity of ethanolic extract and its various fractions from Polytrichum commune L. ex Hedw in L1210 cells. J Ethnopharmacol. 2012;143(1):49–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Brasil. Ministério da Saúde. Memento terapêutico 2007/2008. 2nd edn. Brasília; 2007.Google Scholar
  25. 25.
    Geran RI, Greenberg NH, Macdonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. 3rd ed. Bethesda: National Institute of Health; 1972. p. 47–51.Google Scholar
  26. 26.
    Henmi K, Hiwatashi Y, Hikita E, Toyama N, Hirano T. Methoxy- and fluoro-chalcone derivatives arrest cell cycle progression and induce apoptosis in human melanoma cell A375. Biol Pharm Bull. 2009;32:1109–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen Y, Kramer DL, Diegelman P, Vujcic S, Porter CW. Apoptotic signaling in polyamine analogue-treated SK-MEL-28 human melanoma cells. Cancer Res. 2001;61:6437–44.PubMedGoogle Scholar
  28. 28.
    Li W, Sanki A, Karim RZ, Thompson JF, Soon Lee C, Zhuang L, McCarthy SW, Scolyer RA. The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology. 2006;38:287–301.PubMedCrossRefGoogle Scholar
  29. 29.
    Ladstein R, Bachmann I, Straume O, Akslen LA. Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma. BMC Cancer. 2010;10:140.PubMedCrossRefGoogle Scholar
  30. 30.
    Eberle J, Kurbanov BM, Hossini AM, Trefzer U, Fecker LF. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist Updat. 2007;10:218–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Srinivasan M, Sudheer AR, Rajasekaran KN, Menon VP. Effects of curcumin analog on gamma-radiation-induced cellular changes in primary culture of isolated rat hepatocytes in vitro. Chem Biol Interact. 2008;176:1–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Jagetia GC, Reddy TK. Modulation of radiation induced alterations in the antioxidant status of mice by naringin. Life Sci. 2005;77:780–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Benzie IF. Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. Int J Food Sci Nutr. 1996;47:233–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Heiskanen KM, Bhat MB, Wang HW, Ma J, Nieminen AL. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J Biol Chem. 1999;274:5654–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11:621–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Mellier G, Huang S, Shenoy K, Pervaiz S. TRAILing death in cancer. Mol Aspects Med. 2010;31:93–112.PubMedCrossRefGoogle Scholar
  37. 37.
    Du CY, Fang M, Li YC, Li L, Wang XD. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5:897–907.PubMedCrossRefGoogle Scholar
  39. 39.
    Bill MA, Fuchs JR, Li C, Yui J, Bakan C, Benson Jr DM, Schwartz EB, Abdelhamid D, Lin J, Hoyt DG, Fossey SL, Young GS, Carson 3rd WE, Li PK, Lesinski GB. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer. 2010;9:165.PubMedCrossRefGoogle Scholar
  40. 40.
    Piro LD. Apoptosis, Bcl-2 antisense, and cancer therapy. Oncology (Williston Park). 2004;18:5–10.Google Scholar
  41. 41.
    Lebe B, Pabuççuoğlu U, Ozer E. The significance of Ki-67 proliferative index and cyclin D1 expression of dysplastic nevi in the biologic spectrum of melanocytic lesions. Appl Immunohistochem Mol Morphol. 2007;15:160–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Linden MD, Torres FX, Kubus J, Zarbo RJ. Clinical application of morphologic and immunocytochemical assessments of cell proliferation. Am J Clin Pathol. 1992;97:S4–13.PubMedGoogle Scholar
  43. 43.
    Al-Hujaily EM, Mohamed AG, Al-Sharif I, Youssef KM, Manogaran PS, Al-Otaibi B, Al-Haza’a A, Al-Jammaz I, Al-Hussein K, Aboussekhra A. PAC, a novel curcumin analogue, has anti-breast cancer properties with higher efficiency on ER-negative cells. Breast Cancer Res Treat. 2011;128:97–107.PubMedCrossRefGoogle Scholar
  44. 44.
    Aggarwal S, Ndinguri MW, Solipuram R, Wakamatsu N, Hammer RP, Ingram D, Hansel W. DLys(6)]-luteinizing hormone releasing hormone-curcumin conjugate inhibits pancreatic cancer cell growth in vitro and in vivo. Int J Cancer. 2011;129:1611–23.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Fernanda Faião-Flores
    • 1
    • 2
  • José Agustín Quincoces Suarez
    • 3
  • Silvya Stuchi Maria-Engler
    • 4
  • Vanessa Soto-Cerrato
    • 5
  • Ricardo Pérez-Tomás
    • 5
  • Durvanei Augusto Maria
    • 1
  1. 1.Laboratory of Biochemistry and BiophysicsButantan InstituteSão PauloBrazil
  2. 2.Faculty of MedicineUniversity of São PauloSão PauloBrazil
  3. 3.Laboratory of Organic SynthesisBandeirante University of São PauloSão PauloBrazil
  4. 4.Department of Clinical Chemistry & Toxicology, School of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
  5. 5.Department of Pathology and Experimental Therapeutics, Cancer Cell Biology Research GroupUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations