Tumor Biology

, Volume 34, Issue 2, pp 787–791 | Cite as

BCA2 is differentially expressed in renal oncocytoma: an analysis of 158 renal neoplasms

  • Laleh Ehsani
  • Rishie Seth
  • Stephanie Bacopulos
  • Arun Seth
  • Adeboye O. Osunkoya
Research Article


The distinction between renal oncocytoma and renal cell carcinoma, especially chromophobe renal cell carcinoma and clear cell carcinoma with oncocytic features, is important due to the different biologic potentials of these tumors. RING E3 ligases have the subject of intense studies for their roles in many diseases including cancer and as potential therapeutic targets. All RING E3 ligases, including BCA2, contain a consensus protein sequence that would complex two or more zinc ions in the expressed protein. Identification of which ubiquitin ligases specifically affect distinct cellular processes is essential to the development of targeted therapeutics in these tumors. The ubiquitin–proteasome system regulates the turnover of proteins that have essential roles in the cell cycle, apoptosis, DNA damage repair, and in protein trafficking, which makes this pathway a target for oncogenic events. In this study, we investigated expression of BCA2 in renal oncocytoma and renal cell carcinoma. A total of 158 patients were included in the study. Our study has shown that 114/114 (100 %) cases of renal cell carcinoma were negative for BCA2. All 38 (100 %) cases of renal oncocytoma were positive for BCA2, and 6/6 (100 %) cases designated as oncocytic neoplasm which favor oncocytoma were also positive for BCA2. This is the first study to date evaluating the expression of BCA2 in renal oncocytoma. BCA2 could serve as a marker that may be utilized in the distinction between renal oncocytoma and its mimickers.


BCA2 Renal oncocytoma Chromophobe renal cell carcinoma Clear cell carcinoma Papillary renal cell carcinoma 


  1. 1.
    Zippel L. Zur kenntnis der onkocytoma. Virchows Arch [A] Pathol Anat. 1942;308:360–82.CrossRefGoogle Scholar
  2. 2.
    Klein MJ, Valesi QJ. Proximal tubular adenomas of kidney with so-called oncocytic features. A clinicopathologic study of 13 cases of a rarely reported neoplasm. Cancer. 1976;38:906–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Frydenberg M, Eckstein RP, Saalfield JA, et al. Renal oncocytoma—an Australian experience. Br J Urol. 1991;67:352–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Amin MB, Crotty TB, Tickoo SK, et al. Renal oncocytoma: a reappraisalof morphologic features with clinicopathologic findings in 80 cases. Am J Surg Pathol. 1997;21:1–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Lieber MM, Tomera KM, Farrow GM. Renal oncocytoma. J Urol. 1981;125:481–5.PubMedGoogle Scholar
  6. 6.
    Perez-Ordonez B, Hamed G, Campbell S, et al. Renal oncocytoma: a clinicopathologic study of 70 cases. Am J Surg Pathol. 1997;21:871–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Davis Jr CJ, Mostofi FK, Sesterhenn I, et al. Renal oncocytoma. Clinicopathological study of 166 patients. J Urogen Pathol. 1991;1:41–52.Google Scholar
  8. 8.
    Humphrey PA, Dehner LP, Pfeifer JD. Oncocytoma. The Washington Manual of Surgical Pathology. Lippincott, Williams and Wilkins, 2008;293–4.Google Scholar
  9. 9.
    Brahemi G, Kona FR, Fiasella A, et al. Exploring the structural requirements for inhibition of the ubiquitin E3 ligase breast cancer associated protein 2 (BCA2) as a treatment for breast cancer. J Med Chem. 2010;53(7):2757–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Burger AM, Gao Y, Amemiya Y, et al. A novel RING-type ubiquitin ligase breast cancer-associated gene 2 correlates with outcome in invasive breast cancer. Cancer Res. 2005;65(22):10401–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Kuroda N, Kanomata N, Yamaguchi T, et al. Immunohistochemical application of S100A1 in renal oncocytoma, oncocytic papillary renal cell carcinoma, and two variants of chromophobe renal cell carcinoma. Med Mol Morphol. 2011;44(2):111–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim SS, Choi YD, Shim MK, et al. Microscopic and nuclear morphometric findings of chromophobe renal cell carcinoma, renal oncocytoma, and tumor with overlapping histology. Ann Diagn Pathol. 2012;16(6):429–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Mathers ME, Pollock AM, Marsh C, O’Donnell M. Cytokeratin 7: a useful adjunct in the diagnosis of chromophobe renal cell carcinoma. Histopathology. 2002;40:563–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Carrion R, Morgan BE, Tannenbaum M, Salup R, Morgan MB. Caveolin expression in adult renal tumors. Urol Oncol. 2003;21:191–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Garcia E, Li M. Caveolin-1 immunohistochemical analysis in differentiating chromophobe renal cell carcinoma from renal oncocytoma. Am J Clin Pathol. 2006;125:392–8.PubMedGoogle Scholar
  16. 16.
    Rampino T, Gregorini M, Soccio G, et al. The Ron proto-oncogene product is a phenotypic marker of renal oncocytoma. Am J Surg Pathol. 2003;27:779–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Patton KT, Tretiakova MS, Yao JL, et al. Expression of RON proto-oncogene in renal oncocytoma and chromophobe renal cell carcinoma. Am J Surg Pathol. 2004;28:1045–105.PubMedCrossRefGoogle Scholar
  18. 18.
    Mazel PR, Exner M, Haitel A, et al. Expression of kidney-specifi c cadherin distinguishes chromophobe renal cell carcinoma from renal oncocytoma. Hum Pathol. 2005;36:22–8.CrossRefGoogle Scholar
  19. 19.
    Shen SS, Krishna B, Chirala R, Amato RJ, Troung LD. Kidney-specific cadherin: a specific marker for the distal portion of the nephron and related renal neoplasms. Mod Pathol. 2005;18:933–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Adley BP, Gupta A, Lin F, et al. Expression of kidney-specific cadherin in chromophobe renal cell carcinoma and renal oncocytoma. Am J Clin Pathol. 2006;126:79–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuehn AK, Paner GP, Skinnider BF, et al. Expression analysis of kidney-specific cadherin in a wide spectrum of traditional and newly recognized renal epithelial neoplasms: diagnostic and histogenetic implications. Am J Surg Pathol. 2007;31:1528–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Osunkoya AO, Cohen C, Lawson D, et al. Claudin-7 and claudin-8: immunohistochemical markers for the differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma. Hum Pathol. 2009;40(2):206–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Fernández-Aceñero MJ, Cazorla A, Manzarbeitia F. Immunohistochemistry for the differential diagnosis of renal tumors with oncocytic features. Urol Oncol. 2011;29(5):545–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Hes O, Brunelli M, Michal M, et al. Oncocytic papillary renal cell carcinoma: a clinicopathologic, immunohistochemical, ultrastructural, and interphase cytogenetic study of 12 cases. Ann Diagn Pathol. 2006;10:133–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Kunju LP, Wojno K, Wolf JS, Cheng L, Shah RB. Papillary renal cell carcinoma with oncocytic cells and nonoverlapping low grade nuclei: expanding the morphologic spectrum with emphasis on clinicopathologic, immunohistochemical and molecular features. Hum Pathol. 2008;39:96–101.PubMedCrossRefGoogle Scholar
  26. 26.
    Joazeiro CA, Weisseman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell. 2000;102:549–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Tanaka K, Kawakami T, Tateishi K, Yashiroda H, Chiba T. Control of IKBA proteolysis by the ubiquitin-proteasome pathway. Biochimie. 2001;83:351–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Pan ZQ, Kentsis A, Dias DC, Yamoah K, Wu K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene. 2004;23:1985–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Dohmen RJ. SUMO protein modification. Biochim Biophys Acta. 2004;1695:113–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Pickart CM, Ed dins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 2004;1695:55–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Aragon L. Sumoylation: a new wrestler in the DNA repair ring. Proc Natl Acad Sci U S A. 2005;102:4661–2.PubMedCrossRefGoogle Scholar
  32. 32.
    Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol. 2005;23:4776–89.PubMedCrossRefGoogle Scholar
  33. 33.
    Denison C, Kirkpatrick DS, Gygi SP. Proteomic insights into ubiquitin and ubiquitin-like proteins. Curr Opin Chem Biol. 2005;9:69–75.PubMedCrossRefGoogle Scholar
  34. 34.
    Yutaka A, Peter A, Arun S. Autoubiquitination of BCA2 RING E3 ligase regulates its own stability and affects cell migration. Mol Cancer Res. 2008;6:1385–96.CrossRefGoogle Scholar
  35. 35.
    Hershko A, Ciechanover A. The ubiquitin system. Ann Rev Biochem. 1998;67:425–79.PubMedCrossRefGoogle Scholar
  36. 36.
    Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer. 2004;40:2217–29.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang Z, Liao B, Xu M, Jin Y. Post-translational modification of POU domain transcription factor Oct-4 by SUMO-1. FASEB J. 2007;21:3042–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Burger AM, Kona F, Amemiya Y, et al. Role of the BCA2 ubiquitin E3 ligase in hormone responsive breast cancer. Open Cancer J. 2010;3(1):116–23.PubMedGoogle Scholar
  39. 39.
    Burger A, Amemiya Y, Kitching R, Seth AK. Novel ring E3 ubiquitin ligases in breast cancer. Neoplasia. 2006;8(8):689–95.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Laleh Ehsani
    • 1
  • Rishie Seth
    • 4
  • Stephanie Bacopulos
    • 4
  • Arun Seth
    • 4
  • Adeboye O. Osunkoya
    • 1
    • 2
    • 3
  1. 1.Department of PathologyEmory University School of MedicineAtlantaUSA
  2. 2.Department of UrologyEmory University School of MedicineAtlantaUSA
  3. 3.Emory Winship Cancer InstituteAtlantaUSA
  4. 4.Sunnybrook Health Sciences CenterTorontoCanada

Personalised recommendations