Tumor Biology

, Volume 34, Issue 1, pp 531–542 | Cite as

Upregulation of CD200 is associated with Foxp3+ regulatory T cell expansion and disease progression in acute myeloid leukemia

  • Ali Memarian
  • Maryam Nourizadeh
  • Farimah Masoumi
  • Mina Tabrizi
  • Amir Hossein Emami
  • Kamran Alimoghaddam
  • Jamshid Hadjati
  • Mahroo Mirahmadian
  • Mahmood Jeddi-Tehrani
Research Article


Immunosuppression in acute myeloid leukemia (AML) is an important mechanism of tumor escape. CD200, as an immunosuppressive molecule, is overexpressed in some hematological malignancies and it has also been shown to be an independent prognostic factor in AML. In the current study, simultaneous CD200 expression and Foxp3+ regulatory T cell levels were investigated in Iranian patients with AML by flow cytometry. We also assessed the effect of CD200–CD200R blockade on Th1 and T-reg cytokine production and T cell proliferation in autologous AML- and monocyte-DC mixed lymphocyte reactions (MLRs). ELISA assay was performed to detect IL-2, IL-12, IFN-γ, IL-10, and TGF-β production in MLR supernatants. Expression of Foxp3, IL-10, and TGF-β mRNAs in MLRs were detected by real-time PCR. Our results demonstrated significant overexpression of CD200 (P = 0.001) in association with higher frequencies of Foxp3+ T cells in AML patients (r = 0.8, P < 0.001). Blocking of CD200–CD200R interaction demonstrated a significant decrease in TGF-β and IL-10 expression in AML-DC MLRs and a significant increase in IL-12 and IFN-γ expression in monocyte-DC MLRs. Elevated T cell levels with lower Foxp3 intensity was also shown in CD200–CD200R-blocked MLRs. Expression of IL-10 mRNA declined significantly only in AML-DC MLRs where CD200–CD200R interaction was blocked and the same result was observed for TGF-β and Foxp3 mRNA in both AML- and monocyte-DC MLRs. These data present a significant role for CD200 in suppressing anti-tumor immune response through stimulation of regulatory mechanisms in AML patients and suggest that CD200 may have a prognostic value in this malignancy and its blockade may be used as a target for AML immunotherapy.


CD200 Acute myeloid leukemia T-reg Immunosuppression Disease progression 



This study was supported by a grant from Tehran University of Medical Sciences and Avicenna Research Institute.

Conflict of interest


Supplementary material

13277_2012_578_MOESM1_ESM.doc (100 kb)
Supplementary Table Major clinical and laboratory characteristics of AML patients (DOC 99.5 kb)


  1. 1.
    Jabbour EJ, Estey E, Kantarjian HM. Adult acute myeloid leukemia. Mayo Clin Proc. 2006;81(2):247–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368(9550):1894–907.PubMedCrossRefGoogle Scholar
  3. 3.
    van den Ancker W, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Back to basics: in search of the optimal dendritic cell for vaccination in AML. Leuk Res. 2008;32(11):1641–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith M, Barnett M, Bassan R, Gatta G, Tondini C, Kern W. Adult acute myeloid leukaemia. Critical Reviews in Oncology/Hematology. 2004;50(3):197–222.PubMedCrossRefGoogle Scholar
  5. 5.
    Stewart TJ, Smyth MJ. Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev. 2011;30(1):125–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Shields JD. Lymphatics: at the interface of immunity, tolerance, and tumor metastasis. Microcirculation. 2011;18(7):517–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang X, Zheng J, Liu J, Yao J, He Y, Li X, et al. Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol. 2005;75(6):468–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Roddie H, Klammer M, Thomas C, Thomson R, Atkinson A, Sproul A, et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol. 2006;133(2):152–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Delluc S, Hachem P, Rusakiewicz S, Gaston A, Marchiol-Fournigault C, Tourneur L, et al. Dramatic efficacy improvement of a DC-based vaccine against AML by CD25 T cell depletion allowing the induction of a long-lasting T cell response. Cancer Immunol Immunother. 2009;58(10):1669–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15(10):3325–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Curti A, Trabanelli S, Onofri C, Aluigi M, Salvestrini V, Ocadlikova D, et al. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica. 2010;95(12):2022–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118(19):5084–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Coles SJ, Hills RK, Wang EC, Burnett AK, Man S, Darley RL, et al. Increased CD200 expression in acute myeloid leukemia is linked with an increased frequency of FoxP3(+) regulatory T cells. Leukemia. 2012;26(9):2146–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou Q, Bucher C, Munger ME, Highfill SL, Tolar J, Munn DH, et al. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood. 2009;114(18):3793–802. doi: 10.1182/blood-2009-03-208181.PubMedCrossRefGoogle Scholar
  15. 15.
    Schmitt A, Reinhardt P, Hus I, Tabarkiewicz J, Rolinski J, Barth T, et al. Large-scale generation of autologous dendritic cells for immunotherapy in patients with acute myeloid leukemia. Transfusion. 2007;47(9):1588–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Dendritic cell-based immunotherapy in acute and chronic myeloid leukaemia. Biomedecine & Pharmacotherapie. 2007;61(6):306–14.CrossRefGoogle Scholar
  17. 17.
    Barclay AN, Clark MJ, McCaughan GW. Neuronal/lymphoid membrane glycoprotein MRC OX-2 is a member of the immunoglobulin superfamily with a light-chain-like structure. Biochemical Society Symposium. 1986;51:149–57.PubMedGoogle Scholar
  18. 18.
    Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology. 2001;102(2):173–9.PubMedCrossRefGoogle Scholar
  19. 19.
    McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter KN, Mockridge CI, et al. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci U S A. 2006;103(4):1041–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D, et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol. 2007;178(9):5595–605.PubMedGoogle Scholar
  21. 21.
    Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A. Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother. 2008;57(7):987–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Moreaux J, Veyrune JL, Reme T, De Vos J, Klein B. CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun. 2008;366(1):117–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS. Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol. 2008;180(2):699–705.PubMedGoogle Scholar
  24. 24.
    Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK, et al. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia. 2007;21(3):566–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Coles SJ, Wang EC, Man S, Hills RK, Burnett AK, Tonks A, et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia. 2011;25(5):792–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Gharagozlou S, Kardar GA, Rabbani H, Shokri F. Molecular analysis of the heavy chain variable region genes of human hybridoma clones specific for coagulation factor VIII. Thromb Haemost. 2005;94(6):1131–7.PubMedGoogle Scholar
  27. 27.
    Kazemi T, Asgarian-Omran H, Hojjat-Farsangi M, Shabani M, Memarian A, Sharifian RA, et al. Fc receptor-like 1–5 molecules are similarly expressed in progressive and indolent clinical subtypes of B-cell chronic lymphocytic leukemia. Int J Cancer. 2008;123(9):2113–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Hadjati J. Synergistic effect of Toll-like receptor 4 and 7/8 agonists is necessary to generate potent blast-derived dendritic cells in acute myeloid leukemia. Leuk Res. 2012;36(9):1193–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Paustian C, Caspell R, Johnson T, Cohen PA, Shu S, Xu S, et al. Effect of multiple activation stimuli on the generation of Th1-polarizing dendritic cells. Hum Immunol. 2011;72(1):24–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Gorczynski RM, Lee L, Boudakov I. Augmented induction of CD4+ CD25+ Treg using monoclonal antibodies to CD200R. Transplantation. 2005;79(9):1180–3.PubMedCrossRefGoogle Scholar
  31. 31.
    Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, et al. CD200 is a new prognostic factor in multiple myeloma. Blood. 2006;108(13):4194–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol. 2003;171(6):3034–46.PubMedGoogle Scholar
  33. 33.
    Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, et al. Elevated frequencies of CD4(+) CD25(+) CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer. 2011;129(6):1373–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Maury S, Lemoine FM, Hicheri Y, Rosenzwajg M, Badoual C, Cherai M, et al. CD4+CD25+ regulatory T cell depletion improves the graft-versus-tumor effect of donor lymphocytes after allogeneic hematopoietic stem cell transplantation. Sci Transl Med. 2010;2(41):41–52.CrossRefGoogle Scholar
  35. 35.
    Kimberly BS. Constipation in the elderly: implication in skilled nursing facilities. Director. 2007;15(3):20–3.PubMedGoogle Scholar
  36. 36.
    Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M, et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood. 2006;108(7):2358–65.PubMedCrossRefGoogle Scholar
  37. 37.
    D’Angelo V, Crisci S, Casale F, Addeo R, Giuliano M, Pota E, et al. High Erk-1 activation and Gadd45a expression as prognostic markers in high risk pediatric haemolymphoproliferative diseases. J Exp Clin Cancer Res. 2009;28:39.PubMedCrossRefGoogle Scholar
  38. 38.
    Coles SJ, Hills RK, Wang EC, Burnett AK, Man S, Darley RL, et al. Expression of CD200 on AML blasts directly suppresses memory T-cell function. Leukemia. 2012;26(9):2148–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Pallasch CP, Ulbrich S, Brinker R, Hallek M, Uger RA, Wendtner CM. Disruption of T cell suppression in chronic lymphocytic leukemia by CD200 blockade. Leuk Res. 2009;33(3):460–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang L, Liu JQ, Talebian F, El-Omrani HY, Khattabi M, Yu L, et al. Tumor expression of CD200 inhibits IL-10 production by tumor-associated myeloid cells and prevents tumor immune evasion of CTL therapy. Eur J Immunol. 2010;40(9):2569–79.PubMedCrossRefGoogle Scholar
  41. 41.
    Rygiel TP, Karnam G, Goverse G, van der Marel AP, Greuter MJ, van Schaarenburg RA, et al. CD200-CD200R signaling suppresses anti-tumor responses independently of CD200 expression on the tumor. Oncogene. 2012;31(24):2979–88.PubMedCrossRefGoogle Scholar
  42. 42.
    Rygiel TP, Meyaard L. CD200R signaling in tumor tolerance and inflammation: a tricky balance. Curr Opin Immunol. 2012;24(2):233–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Pillai V, Ortega SB, Wang CK, Karandikar NJ. Transient regulatory T-cells: a state attained by all activated human T-cells. Clin Immunol. 2007;123(1)):18–29. lando, Fla.PubMedCrossRefGoogle Scholar
  44. 44.
    Kmieciak M, Gowda M, Graham L, Godder K, Bear HD, Marincola FM, et al. Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. Journal of Translational Medicine. 2009;7:89.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 2007;37(1):129–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee SK, Kim JY, Jang BW, Hur SE, Na BJ, Lee M, et al. Foxp3(high) and Foxp3(low) Treg cells differentially correlate with T helper 1 and natural killer cells in peripheral blood. Hum Immunol. 2011;72(8):621–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Mittal SK, Sharma RK, Gupta A, Naik S. Increased interleukin-10 production without expansion of CD4+ CD25+ T-regulatory cells in early stable renal transplant patients on calcineurin inhibitors. Transplantation. 2009;88(3):435–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Sato K, Eizumi K, Fukaya T, Fujita S, Sato Y, Takagi H, et al. Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease. Blood. 2009;113(19):4780–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Gorczynski RM. Thymocyte/splenocyte-derived CD4+ CD25+ Treg stimulated by anti-CD200R2 derived dendritic cells suppress mixed leukocyte cultures and skin graft rejection. Transplantation. 2006;81(7):1027–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD. Regulation of myeloid cell function through the CD200 receptor. J Immunol. 2006;176(1):191–9.PubMedGoogle Scholar
  51. 51.
    Hori S. Stability of regulatory T-cell lineage. Adv Immunol. 2011;112:1–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Geiger TL, Tauro S. Nature and nurture in Foxp3(+) regulatory T cell development, stability, and function. Hum Immunol. 2012;73(3):232–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Kretz-Rommel A, Bowdish KS. Rationale for anti-CD200 immunotherapy in B-CLL and other hematologic malignancies: new concepts in blocking immune suppression. Expert Opin Biol Ther. 2008;8(1):5–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Mahadevan D, Lanasa MC, Whelden M, Faas SJ, Ulery TL, Kukreja A, et al. First-in-human phase I dose escalation study of a humanized anti-CD200 antibody (Samalizumab) in patients with advanced stage B cell chronic lymphocytic leukemia (B-CLL) or multiple myeloma (MM). 52nd ASH Annual Meeting and Exposition. 2010; 2116: 2465Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Ali Memarian
    • 1
  • Maryam Nourizadeh
    • 1
  • Farimah Masoumi
    • 1
  • Mina Tabrizi
    • 2
  • Amir Hossein Emami
    • 3
  • Kamran Alimoghaddam
    • 4
  • Jamshid Hadjati
    • 1
  • Mahroo Mirahmadian
    • 1
  • Mahmood Jeddi-Tehrani
    • 5
  1. 1.Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
  2. 2.Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
  3. 3.Clinic of Hematology and Oncology, Vali-Asr Hospital, School of MedicineTehran University of Medical SciencesTehranIran
  4. 4.Hematology, Oncology and Stem Cell Transplantation Research CenterTehran University of Medical Sciences, Shariati HospitalTehranIran
  5. 5.Monoclonal Antibody Research CenterAvicenna Research InstituteTehranIran

Personalised recommendations