Tumor Biology

, Volume 34, Issue 1, pp 349–357 | Cite as

The expression and function of microRNA-203 in lung cancer

  • Jianhua Jin
  • Jianzhong Deng
  • Fang Wang
  • Xiyi Xia
  • Tiefeng Qiu
  • Wenbin Lu
  • Xianwen Li
  • Hua Zhang
  • Xiaoyan Gu
  • Yungang Liu
  • Weiguo Cao
  • Wenlong Shao
Research Article


We aimed to determine the expression of microRNA-203 (miR-203) in human lung cancer cell lines and to evaluate the effects of miR-203 by targeting survivin, on the lung cancer cell line 95-D to provide potential new strategies for treating lung cancer. The expression of miR-203 was detected using quantitative real-time PCR (qRT-PCR) in the in vitro cultured lung cancer cells A549, HCC827, NCI-H1299, and 95-D as well as in normal human bronchial epithelial cells. Following a 72-h transfection with the miR-203 precursor in 95-D lung cancer cells, the change in miR-203 expression was detected using qRT-PCR and the resulting effect on survivin protein expression was ascertained by Western blot analysis. The influence of miR-203 on the viability of 95-D lung cancer cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The effect of miR-203 on 95-D cell proliferation was analyzed using flow cytometry. The consequences of miR-203 expression on 95-D cell apoptosis were analyzed by Annexin V/propidium iodide double staining coupled with flow cytometry. The role of miR-203 in the invasive potential of 95-D cells was studied using a transwell chamber assay. A luciferase reporter gene system was used to verify that survivin is a target gene for miR-203. By qRT-PCR, the expression of miR-203 was lower in lung cancer cells than in normal bronchial epithelial cells (p < 0.01), and the expression of miR-203 in 95-D lung cancer cells was significantly higher after a 72-h transfection with the miR-203 precursor (p < 0.01). After a 72-h transfection with the miR-203 precursor, survivin protein levels in 95-D cells were significantly decreased (p < 0.01). Cell viability, as assessed with an MTT assay, decreased following an increase in miR-203 expression (p < 0.05). The flow cytometry results indicated that after miR-203 expression increased, the cell proliferation index decreased (p < 0.05) and the number of apoptotic cells increased (p < 0.01). Increased miR-203 expression led to a significant decrease in the number of cells that migrated through a transwell chamber membrane (p < 0.01). The luciferase reporter gene system demonstrated that the relative luciferase activity significantly decreased after transfection with the miR-203 precursor (p < 0.05). The expression of miR-203 is downregulated in lung cancer cells. miR-203 negatively regulates survivin protein expression and inhibits the proliferation and invasion of lung cancer cells. Therapeutic strategies that enhance miR-203 expression or silence survivin could potentially benefit lung cancer patients.


miR-203 Lung cancer Survivin Proliferation Apoptosis 


  1. 1.
    Shash E, Peccatori FA, Azim Jr HA. Optimizing the use of epidermal growth factor receptor inhibitors in advanced non-small-lung cancer (NSCLC). J Thorac Dis. 2011;3(1):57–64.PubMedGoogle Scholar
  2. 2.
    Metro G, Crinò L. Advances on EGFR mutation for lung cancer. Transl Lung Cancer Res. 2012;1(1):5–13.Google Scholar
  3. 3.
    Pakkala S, Ramalingam SS. Lung cancer in HIV-positive patients. J Thorac Oncol. 2010;5(11):1864–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Lu TP, Tsai MH, Hsiao CK, Lai LC, Chuang EY. Expression and functions of semaphorins in cancer. Transl Cancer Res. 2012;1(2):74–87.Google Scholar
  5. 5.
    Nieder C, Norum J. Early palliative care in patients with metastatic non-small cell lung cancer. Ann Palliat Med. 2012;1(1):84–6.Google Scholar
  6. 6.
    Zhang LQ, Wang J, Jiang F, Xu L, Liu FY, Yin R. Prognostic value of survivin in patients with non-small cell lung carcinoma: a systematic review with meta-analysis. PLoS One. 2012;7(3):e34100.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen WQ, Zhang SW, Zou XN, Zhao P. Cancer incidence and mortality in China, 2006. Chin J Cancer Res. 2011;23(1):3–9.CrossRefGoogle Scholar
  8. 8.
    You WC. Contribution from cancer epidemiological studies in China. Chin J Cancer Res. 2011;23(1):1–2.CrossRefGoogle Scholar
  9. 9.
    Park BJ. Robotic lobectomy for non-small cell lung cancer (NSCLC): multi-registry study of long-term oncologic results. Ann Cardiothorac Surg. 2012;1(1):24–6.Google Scholar
  10. 10.
    Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.PubMedGoogle Scholar
  11. 11.
    Koga Y, Yasunaga M, Moriya Y, Akasu T, Fujita S, Yamamoto S, Matsumura Y. Exosome can prevent RNase from degrading microRNA in feces. J Gastrointest Oncol. 2011;2(4):215–22.PubMedGoogle Scholar
  12. 12.
    Wall N. Colorectal cancer screening using protected microRNAs. J Gastrointest Oncol. 2011;2(4):206–7.PubMedGoogle Scholar
  13. 13.
    Meng F, Francis H, Alpini G. Non-coding RNAs in human liver malignancies, critical regulators for cancer stemness? Transl Gastrointest Cancer. 2012;1(1):1–4.Google Scholar
  14. 14.
    Knuckles P, Vogt MA, Lugert S, Milo M, Chong MM, Hautbergue GM, Wilson SA, Littman DR, Taylor V. Drosha regulates neurogenesis by controlling neurogenin 2 expression independent of microRNAs. Nat Neurosci. 2012;15(7):962–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Shu GS, Yang ZL, Liu DC. Immunohistochemical study of Dicer and Drosha expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Pathol Res Pract. 2012;208(7):392–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Tan GS, Garchow BG, Liu X, Metzler D, Kiriakidou M. Clarifying mammalian RISC assembly in vitro. BMC Mol Biol. 2011;12:19.PubMedCrossRefGoogle Scholar
  17. 17.
    Hebert SS, Sergeant N, Buee L. MicroRNAs and the regulation of tau metabolism. Int J Alzheimers Dis. 2012;2012:406561.PubMedGoogle Scholar
  18. 18.
    Ui-Tei K, Nishi K, Takahashi T, Nagasawa T. Thermodynamic control of small RNA-mediated gene silencing. Front Genet. 2012;3:101.PubMedGoogle Scholar
  19. 19.
    Yang JS, Maurin T, Lai EC. Functional parameters of Dicer-independent microRNA biogenesis. RNA. 2012;18(5):945–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang J, Li LC. Small RNA and its application in andrology and urology. Transl Androl Urol. 2012;1(1):33–43.PubMedGoogle Scholar
  21. 21.
    Aliotta J. Tumor exosomes: a novel biomarker? J Gastrointest Oncol. 2011;2(4):203–5.PubMedGoogle Scholar
  22. 22.
    Yu J, Li A, Hong SM, Hruban RH, Goggins M. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012;18(4):981–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Luzna P, Gregar J, Uberall I, Radova L, Prochazka V, Ehrmann Jr J. Changes of microRNAs-192, 196a and 203 correlate with Barrett’s esophagus diagnosis and its progression compared to normal healthy individuals. Diagn Pathol. 2011;6:114.PubMedCrossRefGoogle Scholar
  24. 24.
    Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, Croce CM, Fernandez-Piqueras J, Malumbres M. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506.PubMedCrossRefGoogle Scholar
  25. 25.
    Ikenaga N, Ohuchida K, Mizumoto K, Yu J, Kayashima T, Sakai H, Fujita H, Nakata K, Tanaka M. MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann Surg Oncol. 2010;17(12):3120–8.PubMedCrossRefGoogle Scholar
  26. 26.
    McKenzie JA, Grossman D. Role of the apoptotic and mitotic regulator survivin in melanoma. Anticancer Res. 2012;32(2):397–404.PubMedGoogle Scholar
  27. 27.
    Church DN, Talbot DC. Survivin in solid tumors: rationale for development of inhibitors. Curr Oncol Rep. 2012;14(2):120–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y, Dahiya R. Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17(16):5287–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Gower AC, Steiling K, Brothers 2nd JF, Lenburg ME, Spira A. Transcriptomic studies of the airway field of injury associated with smoking-related lung disease. Proc Am Thorac Soc. 2011;8(2):173–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hassanein M, Rahman JS, Chaurand P, Massion PP. Advances in proteomic strategies toward the early detection of lung cancer. Proc Am Thorac Soc. 2011;8(2):183–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Ellis PM, Vandermeer R. Delays in the diagnosis of lung cancer. J Thorac Dis. 2011;3(3):183–8.PubMedGoogle Scholar
  32. 32.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Cho WC. MicroRNAs as therapeutic targets and their potential applications in cancer therapy. Expert Opin Ther Targets. 2012;16(8):747–59.PubMedCrossRefGoogle Scholar
  34. 34.
    Xiao DK, He JX. Epithelial mesenchymal transition and lung cancer. J Thorac Dis. 2010;2(3):154–9.PubMedGoogle Scholar
  35. 35.
    Izzotti A, Cartiglia C, Steele VE, De Flora S. MicroRNAs as targets for dietary and pharmacological inhibitors of mutagenesis and carcinogenesis. Mutat Res. 2012;751(2):287–303.PubMedCrossRefGoogle Scholar
  36. 36.
    Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, Nusbaum JD, Feederle R, Delecluse HJ, Luftig MA, et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 2012;8(1):e1002484.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen L, Li C, Zhang R, Gao X, Qu X, Zhao M, Qiao C, Xu J, Li J. miR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma. Cancer Lett. 2011;309(1):62–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S, Barbarotto E, Cimmino A, Adair B, Wojcik SE, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011;305(1):59–67.PubMedCrossRefGoogle Scholar
  39. 39.
    Dong C, Ji M, Ji C. microRNAs and their potential target genes in leukemia pathogenesis. Cancer Biol Ther. 2009;8(3):200–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Bostjancic E, Glavac D. Importance of microRNAs in skin morphogenesis and diseases. Acta Dermatovenerol Alp Panonica Adriat. 2008;17(3):95–102.PubMedGoogle Scholar
  41. 41.
    Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011;278(10):1598–609.PubMedCrossRefGoogle Scholar
  42. 42.
    Bian K, Fan J, Zhang X, Yang XW, Zhu HY, Wang L, Sun JY, Meng YL, Cui PC, Cheng SY, et al. MicroRNA-203 leads to G1 phase cell cycle arrest in laryngeal carcinoma cells by directly targeting survivin. FEBS Lett. 2012;586(6):804–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang C, Zheng X, Shen C, Shi Y. MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells. J Exp Clin Cancer Res. 2012;31:58.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Jianhua Jin
    • 1
  • Jianzhong Deng
    • 1
  • Fang Wang
    • 1
  • Xiyi Xia
    • 2
  • Tiefeng Qiu
    • 2
  • Wenbin Lu
    • 1
  • Xianwen Li
    • 1
  • Hua Zhang
    • 1
  • Xiaoyan Gu
    • 1
  • Yungang Liu
    • 1
  • Weiguo Cao
    • 3
  • Wenlong Shao
    • 4
  1. 1.Department of Medical Oncology, Wujin People’s HospitalJiangsu UniversityChangzhouPeople’s Republic of China
  2. 2.Department of Respiratory Medicine, Wujin People’s HospitalJiangsu UniversityChangzhouChina
  3. 3.Department of Oncology, Ruijin HospitalShanghai Jiaotong UniversityShanghaiChina
  4. 4.Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical CollegeGuangzhouChina

Personalised recommendations