Skip to main content

Advertisement

Log in

Elevated serine protease HtrA1 inhibits cell proliferation, reduces invasion, and induces apoptosis in esophageal squamous cell carcinoma by blocking the nuclear factor-κB signaling pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

Emerging evidence has demonstrated that high-temperature requirement protein A1 (HtrA1) appears to be involved in several important biological processes in mammals such as growth, apoptosis, embryogenesis, invasion, metastasis, and cancer and has been verified to be reduced in a variety of human tumors. However, its precise functions and molecular mechanisms in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we detected HtrA1 level in ESCC tissues and cells and investigated the biological roles of HtrA1 in ESCC. We found that expressions of HtrA1 mRNA and protein in ESCC tissues and cells were significantly lower than those in normal esophageal epithelial tissues and cells (P < 0.05). Expressions of HtrA1 mRNA and protein were closely associated with TNM staging and lymph node metastasis (P < 0.05). Additionally, the survival rate of patients with low HtrA1 level was lower than those patients with high HtrA1 level (P < 0.05). Elevated HtrA1 level markedly inhibited cell proliferation in vitro and in vivo, reduced cell invasion in vitro, and induced cell apoptosis. Notably, HtrA1 overexpression inhibited phosphorylation levels of IκBα and p65 subunit of the NF-κB signaling pathway, but increased total IκBα level, coupled with decreases of Ki-67, Bcl-2, Bcl-xL, cyclin D1, and MMP-9 proteins and increase of caspase-3 activity. Overall, these data suggest that HtrA1 may play critical roles in the tumorgenesis and progression of ESCC, and HtrA1 overexpression exerts its anti-tumor effect by blocking the NF-κB signaling pathway; thus, manipulation of HtrA1 may be an effective molecular target for ESCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zumbrunn J, Trueb B. Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett. 1996;398(2–3):187–92.

    Article  PubMed  CAS  Google Scholar 

  2. Zumbrunn J, Trueb B. Localization of the gene for a serine protease with IGF-binding domain (PRSS11) to human chromosome 10q25.3-q26.2. Genomics. 1997;45(2):461–2.

    Article  PubMed  CAS  Google Scholar 

  3. Baldi A, De Luca A, Morini M, Battista T, Felsani A, Baldi F, et al. The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene. 2002;21(43):6684–8.

    Article  PubMed  CAS  Google Scholar 

  4. Chien J, Staub J, Hu SI, Erickson-Johnson MR, Couch FJ, Smith DI, et al. A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene. 2004;23(8):1636–44.

    Article  PubMed  CAS  Google Scholar 

  5. Chien J, Aletti G, Baldi A, Catalano V, Muretto P, Keeney GL, et al. Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity. J Clin Invest. 2006;116(7):1994–2004.

    Article  PubMed  CAS  Google Scholar 

  6. De Luca A, De Falco M, De Luca L, Penta R, Shridhar V, Baldi F, et al. Pattern of expression of HtrA1 during mouse development. J Histochem Cytochem. 2004;52(12):1609–17.

    Article  PubMed  Google Scholar 

  7. Narkiewicz J, Klasa-Mazurkiewicz D, Zurawa-Janicka D, Skorko-Glonek J, Emerich J, Lipinska B. Changes in mRNA and protein levels of human HtrA1, HtrA2 and HtrA3 in ovarian cancer. Clin Biochem. 2008;41(7–8):561–9.

    Article  PubMed  CAS  Google Scholar 

  8. Esposito V, Campioni M, De Luca A, Spugnini EP, Baldi F, Cassandro R, et al. Analysis of HtrA1 serine protease expression in human lung cancer. Anticancer Res. 2006;26(5A):3455–9.

    PubMed  CAS  Google Scholar 

  9. Bowden MA, Di Nezza-Cossens LA, Jobling T, Salamonsen LA, Nie G. Serine proteases HTRA1 and HTRA3 are down-regulated with increasing grades of human endometrial cancer. Gynecol Oncol. 2006;103(1):253–60.

    Article  PubMed  CAS  Google Scholar 

  10. Narkiewicz J, Lapinska-Szumczyk S, Zurawa-Janicka D, Skorko-Glonek J, Emerich J, Lipinska B. Expression of human HtrA1, HtrA2, HtrA3 and TGF-beta1 genes in primary endometrial cancer. Oncol Rep. 2009;21(6):1529–37.

    PubMed  CAS  Google Scholar 

  11. Zhu F, Jin L, Luo TP, Luo GH, Tan Y, Qin XH. Serine protease HtrA1 expression in human hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2010;9(5):508–12.

    PubMed  Google Scholar 

  12. Liu YQ, Hu XY, Lu T, Cheng YN, Young CY, Yuan HQ, et al. Retigeric acid B exhibits antitumor activity through suppression of nuclear factor-kappaB signaling in prostate cancer cells in vitro and in vivo. PLoS One. 2012;7(5):e38000.

    Article  PubMed  CAS  Google Scholar 

  13. De Luca A, De Falco M, Fedele V, Cobellis L, Mastrogiacomo A, Laforgia V, et al. The serine protease HtrA1 is upregulated in the human placenta during pregnancy. J Histochem Cytochem. 2004;52(7):885–92.

    Article  PubMed  Google Scholar 

  14. Liu Y, Li K, Ren Z, Li S, Zhang H, Fan Q. Clinical implication of elevated human cervical cancer oncogene-1 expression in esophageal squamous cell carcinoma. J Histochem Cytochem. 2012;60(7):512–20.

    PubMed  Google Scholar 

  15. Zhao H, Yang J, Fan T, Li S, Ren X: RhoE functions as a tumor suppressor in esophageal squamous cell carcinoma and modulates the PTEN/PI3K/Akt signaling pathway. Tumour Biol 2012.

  16. Kataoka K, Ono T, Murata H, Morishita M, Yamamoto KI, Sakaguchi M, et al. S100A7 promotes the migration and invasion of osteosarcoma cells via the receptor for advanced glycation end products. Oncol Lett. 2012;3(5):1149–53.

    PubMed  CAS  Google Scholar 

  17. Jin HR, Jin SZ, Cai XF, Li D, Wu X, Nan JX, et al. Cryptopleurine targets NF-kappaB pathway, leading to inhibition of gene products associated with cell survival, proliferation, invasion, and angiogenesis. PLoS One. 2012;7(6):e40355.

    Article  PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  19. Lu Z, Liu H, Xue L, Xu P, Gong T, Hou G. An activated Notch1 signaling pathway inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cell line EC9706. Int J Oncol. 2008;32(3):643–51.

    PubMed  CAS  Google Scholar 

  20. Hou G, Zhang Q, Wang L, Liu M, Wang J, Xue L. mTOR inhibitor rapamycin alone or combined with cisplatin inhibits growth of esophageal squamous cell carcinoma in nude mice. Cancer Lett. 2010;290(2):248–54.

    Article  PubMed  CAS  Google Scholar 

  21. Kang MR, Kang JS, Yang JW, Kim BG, Kim JA, Jo YN, et al. Gene expression profiling of KBH-A42, a novel histone deacetylase inhibitor, in human leukemia and bladder cancer cell lines. Oncol Lett. 2012;3(1):113–8.

    PubMed  CAS  Google Scholar 

  22. Rubio MF, Fernandez PN, Alvarado CV, Panelo LC, Grecco MR, Colo GP, et al. Cyclin D1 is a NF-kappaB corepressor. Biochim Biophys Acta. 2012;1823(6):1119–31.

    Article  PubMed  CAS  Google Scholar 

  23. Wang LJ, Zhou X, Wang W, Tang F, Qi CL, Yang X, et al. Andrographolide inhibits oral squamous cell carcinogenesis through NF-kappaB inactivation. J Dent Res. 2011;90(10):1246–52.

    Article  PubMed  CAS  Google Scholar 

  24. Yang P, Guo L, Duan ZJ, Tepper CG, Xue L, Chen X, et al. Histone methyltransferase NSD2/MMSET mediates constitutive NF-kappaB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop. Mol Cell Biol. 2012;32(15):3121–31.

    Article  PubMed  CAS  Google Scholar 

  25. Li F, Wang Y, Wang X, Li J, Cui H, Niu M: Ganoderic acids suppress growth and angiogenesis by modulating the NF-kappaB signaling pathway in breast cancer cells. Int J Clin Pharmacol Ther 2012.

  26. Lu Y, Wahl LM. Production of matrix metalloproteinase-9 by activated human monocytes involves a phosphatidylinositol-3 kinase/Akt/IKKalpha/NF-kappaB pathway. J Leukoc Biol. 2005;78(1):259–65.

    Article  PubMed  CAS  Google Scholar 

  27. Wang W, Abbruzzese JL, Evans DB, Chiao PJ. Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene. 1999;18(32):4554–63.

    Article  PubMed  CAS  Google Scholar 

  28. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415(6870):436–42.

    Article  PubMed  CAS  Google Scholar 

  29. Zurawa-Janicka D, Skorko-Glonek J, Lipinska B. HtrA proteins as targets in therapy of cancer and other diseases. Expert Opin Ther Targets. 2010;14(7):665–79.

    Article  PubMed  CAS  Google Scholar 

  30. Mullany SA, Moslemi-Kebria M, Rattan R, Khurana A, Clayton A, Ota T, et al. Expression and functional significance of HtrA1 loss in endometrial cancer. Clin Cancer Res. 2011;17(3):427–36.

    Article  PubMed  CAS  Google Scholar 

  31. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, et al. Hampton GM: analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 2001;61(16):5974–8.

    PubMed  CAS  Google Scholar 

  32. Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004;164(1):217–27.

    Article  PubMed  CAS  Google Scholar 

  33. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22(14):2790–9.

    Article  PubMed  CAS  Google Scholar 

  34. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005;8(5):393–406.

    Article  PubMed  CAS  Google Scholar 

  35. Kotliarov Y, Steed ME, Christopher N, Walling J, Su Q, Center A, et al. High-resolution global genomic survey of 178 gliomas reveals novel regions of copy number alteration and allelic imbalances. Cancer Res. 2006;66(19):9428–36.

    Article  PubMed  CAS  Google Scholar 

  36. Kuo SH, Chou CH, Cheng AL, Wang CW, Chen YH, Chen RJ. Expression of BCL10 in cervical cancer has a role in the regulation of cell growth through the activation of NF-kappaB-dependent cyclin D1 signaling. Gynecol Oncol. 2012;126(2):245–51.

    Article  PubMed  CAS  Google Scholar 

  37. Dimitrakopoulos FI, Antonacopoulou AG, Kottorou A, Vlotinou H, Panagopoulos ND, Dougenis D, et al. NSCLC and the alternative pathway of NF-kappaB: uncovering an unknown relation. Virchows Arch. 2012;460(5):515–23.

    Article  PubMed  CAS  Google Scholar 

  38. Tang QL, Xie XB, Wang J, Chen Q, Han AJ, Zou CY, et al. Glycogen synthase kinase-3beta, NF-kappaB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst. 2012;104(10):749–63.

    Article  PubMed  CAS  Google Scholar 

  39. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity. 2012;36(5):742–54.

    Article  PubMed  CAS  Google Scholar 

  40. Hinohara K, Kobayashi S, Kanauchi H, Shimizu S, Nishioka K, Tsuji E, et al. ErbB receptor tyrosine kinase/NF-kappaB signaling controls mammosphere formation in human breast cancer. Proc Natl Acad Sci U S A. 2012;109(17):6584–9.

    Article  PubMed  CAS  Google Scholar 

  41. Sarkar FH, Li Y, Wang Z, Kong D. NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol. 2008;27(5):293–319.

    Article  PubMed  CAS  Google Scholar 

  42. Carbone C, Melisi D. NF-kappaB as a target for pancreatic cancer therapy. Expert Opin Ther Targets. 2012;16 Suppl 2:S1–10.

    Article  PubMed  CAS  Google Scholar 

  43. Liu YC, Chiang IT, Hsu FT, Hwang JJ. Using NF-kappaB as a molecular target for theranostics in radiation oncology research. Expert Rev Mol Diagn. 2012;12(2):139–46.

    Article  PubMed  CAS  Google Scholar 

  44. Nogueira L, Ruiz-Ontanon P, Vazquez-Barquero A, Moris F, Fernandez-Luna JL. The NFkappaB pathway: a therapeutic target in glioblastoma. Oncotarget. 2011;2(8):646–53.

    PubMed  Google Scholar 

  45. Morais C, Gobe G, Johnson DW, Healy H. The emerging role of nuclear factor kappa B in renal cell carcinoma. Int J Biochem Cell Biol. 2011;43(11):1537–49.

    Article  PubMed  CAS  Google Scholar 

  46. Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci. 2011;16:1172–85.

    Article  PubMed  CAS  Google Scholar 

  47. Schneider G, Kramer OH. NFkappaB/p53 crosstalk-a promising new therapeutic target. Biochim Biophys Acta. 2011;1815(1):90–103.

    PubMed  CAS  Google Scholar 

  48. Breccia M, Alimena G. NF-kappaB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia. Expert Opin Ther Targets. 2010;14(11):1157–76.

    Article  PubMed  CAS  Google Scholar 

  49. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, et al. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol. 2007;9(4):470–8.

    Article  PubMed  CAS  Google Scholar 

  50. Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, et al. Platelet-derived growth factor-D overexpression contributes to epithelial–mesenchymal transition of PC3 prostate cancer cells. Stem Cells. 2008;26(6):1425–35.

    Article  PubMed  CAS  Google Scholar 

  51. Poma P, Notarbartolo M, Labbozzetta M, Sanguedolce R, Alaimo A, Carina V, et al. Antitumor effects of the novel NF-kappaB inhibitor dehydroxymethyl-epoxyquinomicin on human hepatic cancer cells: analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production. Int J Oncol. 2006;28(4):923–30.

    PubMed  CAS  Google Scholar 

  52. Dong QG, Sclabas GM, Fujioka S, Schmidt C, Peng B, Wu T, et al. The function of multiple IkappaB:NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene. 2002;21(42):6510–9.

    Article  PubMed  CAS  Google Scholar 

  53. Helbig G, Christopherson 2nd KW. Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H: NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278(24):21631–8.

    Article  PubMed  CAS  Google Scholar 

  54. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–97.

    Article  PubMed  CAS  Google Scholar 

  55. Samant RS, Clark DW, Fillmore RA, Cicek M, Metge BJ, Chandramouli KH, et al. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer. 2007;6:6.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxia Fan.

Additional information

Jin Xia and Feng Wang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, J., Wang, F., Wang, L. et al. Elevated serine protease HtrA1 inhibits cell proliferation, reduces invasion, and induces apoptosis in esophageal squamous cell carcinoma by blocking the nuclear factor-κB signaling pathway. Tumor Biol. 34, 317–328 (2013). https://doi.org/10.1007/s13277-012-0553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0553-6

Keywords

Navigation