Skip to main content

Advertisement

Log in

Biglycan expression and clinical outcome in patients with pancreatic adenocarcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Conflicting results have been reported on the role of extracellular matrix (ECM) proteins in pancreatic cancer. Preclinical studies suggest that the overexpression of biglycan (proteoglycan-I, PG-I), a leucine-rich protein of the ECM, may induce growth arrest of pancreatic cancer cells. The aim of this study was to assess the prognostic role of biglycan expression in pancreatic cancer. We also evaluated MIB-1 and COX-2 expressions (as potential markers of growth and aggressiveness) to better characterize the biology of the tumors. The classical pathological parameters (grading, desmoplasia, perineural, or vascular invasion) as well as molecular determinants of prognosis were examined. MIB-1 (a proliferative index associated with prognosis in most tumors), COX-2, and PG-I expressions were detected by immunohistochemistry and immunofluorescence on tissue samples from 53 patients with pancreatic cancer and reviewed by two independent pathologists. To verify PG-I expression, three rabbit sera (LF104, LF112, and LF121 from NIH, Bethesda, MA, US) were tested. Logrank test and Cox’s model were applied for statistical analysis. Out of 53 patients, 40 had stage III and IV pancreatic cancer. Fourteen patients did not express any of the PG-I epitopes. The patients who expressed at least two PG-I epitopes had shorter survival compared to those with single epitope or lacking any expression (28 vs 44 weeks, P = 0.0021). The MIB-1 higher expression predicted shorter survival (25 vs 41 weeks, P = 0.0059). The other parameters were not associated with clinical outcome. Multivariate analyses confirmed PG-I expression and MIB-1 as independent negative prognostic factors. Patients who presented PG-I expression in the ECM had the worse prognosis compared to those who did not. Our results are not in contrast with the hypothesis that ECM proteins are a potential barrier to metastatic spread in localized pancreatic cancer. Rather, we underline the complexity of tumor–stroma interactions in the advanced stage of cancer and the need of further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhowmick NA, Moses HL. Tumor–stroma interactions. Curr Opin Genet Dev. 2005;15:97–101.

    Article  PubMed  CAS  Google Scholar 

  2. Cheng N, Bhowmick NA, Chytil A, et al. Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene. 2005;24:5053–68.

    Article  PubMed  CAS  Google Scholar 

  3. Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res. 2002;8:2912–23.

    PubMed  CAS  Google Scholar 

  4. Auvinen P, Parkkinen J, Tammi M, et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol. 2000;156:529–36.

    Article  PubMed  CAS  Google Scholar 

  5. Barlow J, Yandell D, Weaver D, Casey T, Plaut K. Higher stromal expression of transforming growth factor-beta type II receptors is associated with poorer prognosis breast tumors. Breast Cancer Res Treat. 2003;79:149–59.

    Article  PubMed  CAS  Google Scholar 

  6. Bergamaschi A, Tagliabue E, Sorlie T, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214:357–67.

    Article  PubMed  CAS  Google Scholar 

  7. Ricciardelli C, Brooks JH, Suwiwat S, et al. Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res. 2002;8:1054–60.

    PubMed  Google Scholar 

  8. Smith K, Fox SB, Whitehouse R, Taylor M, Greenall M, Clarke J, et al. Upregulation of basic fibroblast growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann Oncol. 1999;10:707–13.

    Article  PubMed  CAS  Google Scholar 

  9. Farrow B, Albo D, Berger DH. The role of the tumor microenvironment in the progression of pancreatic cancer. J Surg Res. 2008;149:319–28.

    Article  PubMed  Google Scholar 

  10. Okegawa T, Pong RC, Li Y, Hsieh JT. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim Pol. 2004;51:445–57.

    PubMed  CAS  Google Scholar 

  11. Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004;10:415–27.

    Article  PubMed  Google Scholar 

  12. Bramhall SR, Rosemurgy A, Brown PD, Bowry C, Buckels JA. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol. 2001;19:3447–55.

    PubMed  CAS  Google Scholar 

  13. Farrow B, Rychahou P, O'Connor KL, Evres BM. Butyrate inhibits pancreatic cancer invasion. J Gastrointest Surg. 2003;7:864–70.

    Article  PubMed  Google Scholar 

  14. Garcea G, Neal CP, Pattenden CJ, Steward WP, Berry DP. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur J Cancer. 2005;41:2213–36.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson SK, Ramani VC, Hennings L, Haun RS. Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer. 2007;109:1811–20.

    Article  PubMed  CAS  Google Scholar 

  16. Köninger J, Giese T, di Mola FF, et al. Pancreatic tumor cells influence the composition of the extracellular matrix. Biochem Biophys Res Commun. 2004;322:943–9.

    Article  PubMed  Google Scholar 

  17. Sawai H, Okada Y, Funahashi H, Takahashi H, Matsuo Y, Yasuda A, et al. Basement membrane proteins play an important role in the invasive processes of human pancreatic cancer cells. J Surg Res. 2008;144:117–23.

    Article  PubMed  CAS  Google Scholar 

  18. Truty MJ, Urrutia R. Basics of TGF-beta and pancreatic cancer. Pancreatology. 2007;7:423–35.

    Article  PubMed  CAS  Google Scholar 

  19. Weber CK, Sommer G, Michl P, Fensterer H, Weimer M, Gansauge F, et al. Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology. 2001;121:657–67.

    Article  PubMed  CAS  Google Scholar 

  20. Hill R, Li Y, Tran LM, et al. Cell intrinsic role of Cox-2 in pancreatic cancer development. Mol Cancer Ther 2012 (in press)

  21. Gu X, Ma Y, Xiao J, Zheng H, Song C, Gong Y, et al. Up-regulated biglycan expression correlates with the malignancy in human colorectal cancers. Clin Exp Med. 2011. doi:10.1007/s10238-011-0155-4.

  22. Wang B, Li GX, Zhang SG, et al. Biglycan expression correlates with aggressiveness and poor prognosis of gastric cancer. Exp Biol Med (Maywood). 2011. doi:10.1258/ebm.2011.011124.

  23. Boeck S, Stieber P, Holdenrieder S, Wilkowski R, Heinemann V. Prognostic and therapeutic significance of carbohydrate antigen 19-9 as tumor marker in patients with pancreatic cancer. Oncology. 2006;70:255–64.

    Article  PubMed  CAS  Google Scholar 

  24. Boeck S, Hinke A, Wilkowski R, Heinemann V. Importance of performance status for treatment outcome in advanced pancreatic cancer. World J Gastroenterol. 2007;13:224–7.

    PubMed  Google Scholar 

  25. Ferrone CR, Finkelstein D, Thayer SP, Muzikansky A, Fernandez-del Castillo C, Warshaw AL. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol. 2006;24:2897–902.

    Article  PubMed  CAS  Google Scholar 

  26. Gupta D, Lis CG, Grutsch JF. The European organization for research and treatment of cancer quality of life questionnaire: implications for prognosis in pancreatic cancer. Int J Gastrointest Cancer. 2006;37:65–73.

    Article  PubMed  Google Scholar 

  27. Han SS, Jang JY, Kim SW, Kim WH, Lee KU, Park YH. Analysis of long-term survivors after surgical resection for pancreatic cancer. Pancreas. 2006;32:271–5.

    Article  PubMed  Google Scholar 

  28. Katz MH, Hwang R, Fleming JB, Evans DB. Tumor-node-metastasis staging of pancreatic adenocarcinoma. CA Cancer J Clin. 2008;58:111–25.

    Article  PubMed  Google Scholar 

  29. Krishnan S, Rana V, Janjan NA, et al. Prognostic factors in patients with unresectable locally advanced pancreatic adenocarcinoma treated with chemoradiation. Cancer. 2006;107:2589–96.

    Article  PubMed  CAS  Google Scholar 

  30. Moon HJ, An JY, Heo JS, Choi SH, Joh JW, Kim YI. Predicting survival after surgical resection for pancreatic ductal adenocarcinoma. Pancreas. 2006;32:37–43.

    Article  PubMed  Google Scholar 

  31. Park JK, Yoon YB, Kim YT, Ryu JK, Yoon WJ, Lee SH. Survival and prognostic factors of unresectable pancreatic cancer. J Clin Gastroenterol. 2008;42:86–91.

    Article  PubMed  Google Scholar 

  32. Sezgin C, Karabulut B, Uslu R, Sanli UA, Goksel G, Yuzer Y, et al. Gemcitabine treatment in patients with inoperable locally advanced/metastatic pancreatic cancer and prognostic factors. Scand J Gastroenterol. 2005;40:1486–92.

    Article  PubMed  CAS  Google Scholar 

  33. Tani M, Kawai M, Terasawa H, Ina S, Hirono S, Shimamoto T, et al. Prognostic factors for long-term survival in patients with locally invasive pancreatic cancer. J Hepatobiliary Pancreat Surg. 2007;14:545–50.

    Article  PubMed  Google Scholar 

  34. Tonini G, Pantano F, Vincenzi B, Gabbrielli A, Coppola R, Santini D. Molecular prognostic factors in patients with pancreatic cancer. Expert Opin Ther Targets. 2007;11:1553–69.

    Article  PubMed  CAS  Google Scholar 

  35. Cao D, Zhang Q, Wu LS, Salaria SN, Winter JW, Hruban RH, et al. Prognostic significance of maspin in pancreatic ductal adenocarcinoma: tissue microarray analysis of 223 surgically resected cases. Mod Pathol. 2007;20:570–8.

    Article  PubMed  CAS  Google Scholar 

  36. Chadha KS, Khoury T, Yu J, Black JD, Gibbs JF, Kuvshinoff BW, et al. Activated Akt and Erk expression and survival after surgery in pancreatic carcinoma. Ann Surg Oncol. 2006;13:933–9.

    Article  PubMed  Google Scholar 

  37. Juuti A, Louhimo J, Nordling S, Ristimäki A, Haglund C. Cyclooxygenase-2 expression correlates with poor prognosis in pancreatic cancer. J Clin Pathol. 2006;59:382–6.

    Article  PubMed  CAS  Google Scholar 

  38. Link BC, Reichelt U, Schreiber M, et al. Prognostic implications of netrin-1 expression and its receptors in patients with adenocarcinoma of the pancreas. Ann Surg Oncol. 2007;14:2591–9.

    Article  PubMed  Google Scholar 

  39. Maeda S, Shinchi H, Kurahara H, et al. Clinical significance of midkine expression in pancreatic head carcinoma. Br J Cancer. 2007;97:405–11.

    Article  PubMed  CAS  Google Scholar 

  40. Matsubayashi H, Infante JR, Winter J, et al. Tumor COX-2 expression and prognosis of patients with resectable pancreatic cancer. Cancer Biol Ther. 2007;6:1569–75.

    Article  PubMed  Google Scholar 

  41. Sasada T, Azuma K, Hirai T, et al. Prognostic significance of the immediate early response gene X-1 (IEX-1) expression in pancreatic cancer. Ann Surg Oncol. 2008;15:609–17.

    Article  PubMed  Google Scholar 

  42. Skalicky DA, Kench JG, Segara D, et al. Cyclin E expression and outcome in pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:1941–7.

    Article  PubMed  CAS  Google Scholar 

  43. Sun HC, Qiu ZJ, Liu J, Sun J, Jiang T, Huang KJ, et al. Expression of hypoxia-inducible factor-1 alpha and associated proteins in pancreatic ductal adenocarcinoma and their impact on prognosis. Int J Oncol. 2007;30:1359–67.

    PubMed  CAS  Google Scholar 

  44. Tao J, Xiong J, Li T, Yang Z, Li X, Li K, et al. Correlation between protein expression of PTEN in human pancreatic cancer and the proliferation, infiltration, metastasis and prognosis. J Huazhong Univ Sci Technolog Med Sci. 2006;26:444–7.

    Article  PubMed  CAS  Google Scholar 

  45. Furuyama K, Doi R, Mori T, Furuyama K, Doi R, Mori T, et al. Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World J Surg. 2006;30:219–26.

    Article  PubMed  Google Scholar 

  46. Infante JR, Matsubayashi H, Sato N, et al. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol. 2007;25:319–25.

    Article  PubMed  Google Scholar 

  47. Bland MJ, Altman DJ. Logrank test. BMJ. 2004;328:1073.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Aprile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aprile, G., Avellini, C., Reni, M. et al. Biglycan expression and clinical outcome in patients with pancreatic adenocarcinoma. Tumor Biol. 34, 131–137 (2013). https://doi.org/10.1007/s13277-012-0520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0520-2

Keywords

Navigation