Skip to main content

Advertisement

Log in

ENTPD5-mediated modulation of ATP results in altered metabolism and decreased survival in gliomablastoma multiforme

  • Research Article
  • Published:
Tumor Biology

Abstract

Gliomablastoma multiforme (GBM) is the most aggressive of brain cancers in humans. Response to current therapies remains extremely poor, with dismal survival statistics. Recently, the endoplasmic reticulum UDPase, ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), was identified as a key component in the Akt/phosphatidylinositol 3-kinase/phosphatase and tensin homolog regulatory loop, capable of synergizing aerobic glycolysis and cancer cell proliferation in vitro. Utilizing a novel enhanced acceptor fluorescence-based single-cell adenosine 5′-triphosphate (ATP) biosensor, we analyzed ENTPD5-mediated modulation of cytosolic ATP. Here, ENTPD5-dependent modulation of cellular ATP in GBM results in altered metabolic kinetics in vitro, increasing the catabolic efficiencies of aerobic glycolysis and fatty acid oxidation. Additionally, an upregulation of ENTPD5 in both GBM mouse xenografts and in GBM patient tumors was identified, resulting in dramatically reduced survival. Therefore, these results not only provide new tools to monitor ATP flux and cellular metabolism kinetics but also identified a novel therapeutic target for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(10):114–23.

    Article  PubMed  CAS  Google Scholar 

  2. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(10):1807–12.

    Article  PubMed  CAS  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(4):1029–33.

    Article  Google Scholar 

  4. Locasale JW, Cantley LC, Vander Heiden MG. Cancer’s insatiable appetite. Nat Biotechnol. 2009;27(3):916–7.

    Article  PubMed  CAS  Google Scholar 

  5. Metallo CM, Vander Heiden MG. Metabolism strikes back: metabolic flux regulates cell signaling. Genes Dev. 2010;24(10):2717–22.

    Article  PubMed  CAS  Google Scholar 

  6. Sjøbakk TE, Johansen R, Bathen TF, Sonnewald U, Kvistad KA, Lundren S, Gribbestad IS. Metabolic profiling of human brain metastases using in vivo proton MR spectroscopy at 3 T. BMC Cancer. 2007;7(8):141–5.

    Article  PubMed  Google Scholar 

  7. Mayevsky A. Mitochondrial function and energy metabolism in cancer cells: past overview and future perspectives. Mitochondrion. 2009;9(3):165–79.

    Article  PubMed  CAS  Google Scholar 

  8. Hsing AW, Sakoda LC, Chua Jr S. Obesity, metabolic syndrome and prostate cancer. Am J Clin Nutr. 2007;86(3):s843–57.

    PubMed  Google Scholar 

  9. Shelton LM, Huysentruyt LC, Mukherjee P, Seyfried TN. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN Neuro. 2010;2(3):e00038.

    Article  PubMed  Google Scholar 

  10. Lino MM, Merlo A. PI3Kinase signaling in glioblastoma. J Neurooncol. 2010;103(3):417–27.

    Article  PubMed  Google Scholar 

  11. Fang M, Shen Z, Huang S, Zhao L, Chen S, Mak TW, Wang X. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell. 2010;143(5):711–24.

    Article  PubMed  CAS  Google Scholar 

  12. Read R, Hansen G, Kramer J, Finch R, Li L, Vogel P. Ectonucleoside triphosphate diphosphohydrolase type 5 (Entpd5)-deficient mice develop progressive hepatopathy, hepatocellular tumors, and spermatogenic arrest. Vet Pathol. 2009;46(3):491–504.

    Article  PubMed  CAS  Google Scholar 

  13. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One. 2008;3(7):e2599.

    Article  PubMed  Google Scholar 

  14. Imamura H, Huynh Nhat KP, Togawa H, Saito K, Lino R, Kato-Yamada Y, Nagai T, Noji H. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci USA. 2009;106(37):15651–6.

    Article  PubMed  CAS  Google Scholar 

  15. Calleja V, Ameer-Beg SM, Vojnovic B, Woscholski R, Downward J, Larijani B. Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem J. 2003;372(Pt 1):33–40.

    Article  PubMed  CAS  Google Scholar 

  16. Yuan J, Peng L, Bouma BE, Tearney GJ. Quantitative FRET measurement by high-speed fluorescence excitation and emission spectrometer. Opt Express. 2010;8(18):18839–51.

    Article  Google Scholar 

  17. Shen Z, Huang S, Fang M, Wang X. ENTPD5, an endoplasmic reticulum UDPase, alleviates ER stress induced by protein overloading in Akt-activated cancer cells. Cold Spring Harb Symp Quant Biol. 2011;76(6):217–23.

    Article  PubMed  CAS  Google Scholar 

  18. Baldwin RM, Garratt-Lalonde M, Parolin DA, Krzyzanowski PM, Andrade MA, Lorimer IA. Protection of glioblastoma cells from cisplatin cytotoxicity via protein kinase Ciota-mediated attenuation of p38 MAP kinase signaling. Oncogene. 2006;25(20):2909–19.

    Article  PubMed  CAS  Google Scholar 

  19. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem. 2003;278(23):20915–24.

    Article  PubMed  CAS  Google Scholar 

  20. Piccione EC, Lieu TJ, Gentile CF, Williams TR, Connolly AJ, Godwin AK, Koong AC, Wong AJ. A novel epidermal growth factor receptor variant lacking multiple domains directly activates transcription and is overexpressed in tumors. Oncogene. 2012;31(24):2953–67.

    Article  PubMed  CAS  Google Scholar 

  21. Shnyder SD, Mangum JE, Hubbard MJ. Triplex profiling of functionally distinct chaperones (ERp29/PDI/BiP) reveals marked heterogeneity of the endoplasmic reticulum proteome in cancer. J Proteome Res. 2008;7(8):3364–72.

    Article  PubMed  CAS  Google Scholar 

  22. Qi L, Wu P, Zhang X, Qiu Y, Jiang W, Huang D, Liu Y, Tan P, Tian Y. Inhibiting ERp29 expression enhances radiosensitivity in human nasopharyngeal carcinoma cell lines. Med Oncol. 2012;29(2):721–8.

    Article  PubMed  CAS  Google Scholar 

  23. Ueno T, Sato W, Horie Y, Komatsu M, Tanida I, Yoshida M, Ohshima S, Mak TW, Watanabe S, Kominami E. Loss of Pten, a tumor suppressor, causes the strong inhibition of autophagy without affecting LC3 lipidation. Autophagy. 2008;4(5):692–700.

    PubMed  CAS  Google Scholar 

  24. Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem. 2006;281:30299–304.

    Article  PubMed  CAS  Google Scholar 

  25. Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 2006;9:230–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical aid of Shaojun Zhu, Huijun Yang, Dr. Sirus Kohan, and Ms. Birgitta Sjostrand in experiments was appreciated. Additionally, suggestions provided by Dr. Laurent Vergnes in XF Seahorse Analyzer experiments and Dr. Sergey Marniov and UCLA Brain Tumor Translational Resource for biospecimen and biorepository support were also greatly appreciated. The guidance and experimental suggestions were provided by Dr. James Heath and Dr. Raphael Levine for this project. The UCLA Department of Pathology and Laboratory Medicine and the David Geffen School of Medicine provided early career award and financial support for the project.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohila Zadran.

Additional information

Statement of significance: Utilizing a novel enhanced acceptor fluorescence-based single-cell ATP biosensor, ENTPD5-mediated modulation of cytosolic ATP alters metabolic kinetics. ENTPD5 is identified as a new therapeutic target for GBM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadran, S., Amighi, A., Otiniano, E. et al. ENTPD5-mediated modulation of ATP results in altered metabolism and decreased survival in gliomablastoma multiforme. Tumor Biol. 33, 2411–2421 (2012). https://doi.org/10.1007/s13277-012-0505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0505-1

Keywords

Navigation