Tumor Biology

, Volume 33, Issue 6, pp 2135–2141 | Cite as

Effects of hyaluronic acid and CD44 interaction on the proliferation and invasiveness of malignant pleural mesothelioma

  • Takeshi Hanagiri
  • Shinji Shinohara
  • Masaru Takenaka
  • Yoshiki Shigematsu
  • Manabu Yasuda
  • Hidehiko Shimokawa
  • Yoshika Nagata
  • Makoto Nakagawa
  • Hidetaka Uramoto
  • Tomoko So
  • Fumihiro Tanaka
Research Article


Hyaluronic acid (HA) has been proposed as a biochemical marker of malignant pleural mesothelioma (MPM). The present study focused on the implications of HA and CD44 interaction in the proliferation and invasiveness of MPM. The proliferation and invasive activity was evaluated in two human mesothelioma cell lines, ACC-MESO-1 and K921MSO, by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the transwell chamber model. The knockdown of CD44 gene expression was accomplished by transfection of the cells with small interfering RNA. Flow cytometry revealed that both the ACC-MESO-1 and K921MSO cell lines highly expressed CD44. Treatment with HA enhanced the proliferation in both mesothelioma cell lines in comparison to cells without HA treatment. The treatment with HA (25 μg/ml) also significantly upregulated the invasion of both types of cells. The silencing of CD44 significantly abrogated the effect of HA treatment on the proliferation of ACC-MESO-1 cells and significantly suppressed the proliferation of K921MSO cells. HA–CD44 binding is important for the migration and proliferation of mesothelioma cells. Therefore, the HA–CD44 interaction is a potentially useful therapeutic target in MPM.


Malignant pleural mesothelioma Hyaluronic acid CD44 Proliferation 



This study was supported in part by a UOEH Research Grant for the Promotion of Occupational Health and a Grant-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank Yukari Furutani, Misako Fukumoto, and Yukiko Koyanagi for their expert technical help.

Conflicts of interest



  1. 1.
    Peto J, Hodgson JT, Matthews FE, et al. Continuing increase in mesothelioma mortality in Britain. Lancet. 1995;345:535–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Peto J, Decarli A, La Vecchia C, Levi F, Negri E. The European mesothelioma epidemic. Br J Cancer. 1999;79:666–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Gemba K, Fujimoto N, Kato K, Aoe K, Takeshima Y, Inai K, et al. National survey of malignant mesothelioma and asbestos exposure in Japan. Cancer Sci. 2012;103:483–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Murayama T, Takahashi K, Natori Y, Kurumatani N. Estimation of future mortality from pleural malignant mesothelioma in Japan based on an age-cohort model. Am J Ind Med. 2006;49:1–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Marinaccio A, Scarselli A, Binazzi A, et al. Asbestos related diseases in Italy: an integrated approach to identify unexpected professional or environmental exposure risks at municipal level. Int Arch Occup Environ Health. 2008;81:993–1001.PubMedCrossRefGoogle Scholar
  6. 6.
    Maule MM, Magnani C, Dalmasso P, Mirabelli D, Merletti F, Biggeri A. Modeling mesothelioma risk associated with environmental asbestos exposure. Environ Health Perspect. 2007;115:1066–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21:2636–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Jänne PA, Wozniak AJ, Belani CP, Keohan ML, Ross HJ, Polikoff JA, et al. Pemetrexed expanded access program investigators. Pemetrexed alone or in combination with cisplatin in previously treated malignant pleural mesothelioma: outcomes from a phase IIIB expanded access program. J Thorac Oncol. 2006;1:506–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Sugarbaker DJ, Flores RM, Jaklitsch MT, Richards WG, Strauss GM, Corson JM, et al. Resection margins, extrapleural nodal status, and cell type determine postoperative long-term survival in trimodality therapy of malignant pleural mesothelioma: results in 183 patients. J Thorac Cardiovasc Surg. 1999;117:54–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Thylén A, Hjerpe A, Martensson G. Hyaluronan content in pleural fluid as a prognostic factor in patients with malignant pleural mesothelioma. Cancer. 2001;92:1224–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Hillerdal G, Lindqvist U, Engström-Laurent A. Hyaluronan in pleural effusions and in serum. Cancer. 1991;67:2410–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Laurent TC, Laurent UB, Fraser JR. Functions of hyaluronan. Ann Rheum Dis. 1995;54:429–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Marhaba R, Zöller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35:211–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Usami N, Fukui T, Kondo M, Taniguchi T, Yokoyama T, Mori S, et al. Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients. Cancer Sci. 2006;97:387–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Shigematsu Y, Hanagiri T, Kuroda K, Baba T, Mizukami M, Ichiki Y, et al. Malignant mesothelioma-associated antigens recognized by tumor-infiltrating B cells and the clinical significance of the antibody titers. Cancer Sci. 2009;100:1326–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Baas P, Schouwink H, Zoetmulder FA. Malignant pleural mesothelioma. Ann Oncol. 1998;9:139–49.PubMedCrossRefGoogle Scholar
  17. 17.
    Welker L, Müller M, Holz O, Vollmer E, Magnussen H, Jörres RA. Cytological diagnosis of malignant mesothelioma—improvement by additional analysis of hyaluronic acid in pleural effusions. Virchows Arch. 2007;450:455–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: an overview. Immunol Cell Biol. 1996;74:A1–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Itano N, Sawai T, Atsumi F, Miyaishi O, Taniguchi S, Kannagi R, et al. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem. 2004;279:18679–87.PubMedCrossRefGoogle Scholar
  20. 20.
    Li Y, Li L, Brown TJ, Heldin P. Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells. Int J Cancer. 2007;120:2557–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Twarock S, Tammi MI, Savani RC, Fischer JW. Hyaluronan stabilizes focal adhesions, filopodia, and the proliferative phenotype in esophageal squamous carcinoma cells. J Biol Chem. 2010;285:23276–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang SJ, Bourguignon LY. Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance. Am J Pathol. 2011;178:956–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P. Hyaluronan–CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase Cε–Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem. 2006;281:14026–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Stamenkovic I, Yu Q. Shedding light on proteolytic cleavage of CD44: the responsible sheddase and functional significance of shedding. J Invest Dermatol. 2009;129:1321–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 2004;95(12):930–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Goebeler M, Kaufmann D, Bröcker EB, Klein CE. Migration of highly aggressive melanoma cells on hyaluronic acid is associated with functional changes, increased turnover and shedding of CD44 receptors. J Cell Sci. 1996;109:1957–64.PubMedGoogle Scholar
  27. 27.
    Nandi A, Estess P, Siegelman MH. Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem. 2000;275:14939–48.PubMedCrossRefGoogle Scholar
  28. 28.
    Richter U, Wicklein D, Geleff S, Schumacher U. The interaction between CD44 on tumour cells and hyaluronan under physiologic flow conditions: implications for metastasis formation. Histochem Cell Biol. 2012;137:687–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Li CZ, Liu B, Wen ZQ, Li HY. Inhibition of CD44 expression by small interfering RNA to suppress the growth and metastasis of ovarian cancer cells in vitro and in vivo. Folia Biol. 2008;54:180–6.Google Scholar
  30. 30.
    Sugahara KN, Hirata T, Hayasaka H, Stern R, Murai T, Miyasaka M. Tumor cells enhance their own CD44 cleavage and motility by generating hyaluronan fragments. J Biol Chem. 2006;281:5861–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Sohara Y, Ishiguro N, Machida K, Kurata H, Thant AA, Senga T, et al. Hyaluronan activates cell motility of v-Src-Transformed cells via Ras-mitogen-activated protein kinase and phosphoinositide3-kinase-Akt in a tumor-specific manner. Mol Biol Cell. 2001;12:1859–68.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Takeshi Hanagiri
    • 1
  • Shinji Shinohara
    • 1
  • Masaru Takenaka
    • 1
  • Yoshiki Shigematsu
    • 1
  • Manabu Yasuda
    • 1
  • Hidehiko Shimokawa
    • 1
  • Yoshika Nagata
    • 1
  • Makoto Nakagawa
    • 1
  • Hidetaka Uramoto
    • 1
  • Tomoko So
    • 1
  • Fumihiro Tanaka
    • 1
  1. 1.Second Department of Surgery, School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan

Personalised recommendations