Skip to main content

Advertisement

Log in

Tumor-derived mesenchymal stem cells and orthotopic site increase the tumor initiation potential of putative mouse mammary cancer stem cells derived from MMTV-PyMT mice

  • Research Article
  • Published:
Tumor Biology

Abstract

The ability to transplant mammary cancer stem cells, identified by the phenotype CD24+CD29+CD49f+Sca-1low, is dependent on the microenvironment in which the cells are placed. Using the MMTV-PyMT mouse model of mammary cancer, we now report two methods of tumor growth enhancement: contributions of tumor stroma in the form of tumor-derived mesenchymal stem cells and orthotopic vs. heterotopic transplantation sites. To support evidence of stem cell function, tumor-derived mesenchymal stem cells differentiated into adipocyte- and osteocyte-like cells after culture in specific medium. Co-injection of tumor-initiating cells with tumor-derived mesenchymal stem cells significantly increased tumor initiation compared to subcutaneous injection of TICs alone; co-injection also allowed tumor initiation with a single TIC. Interestingly, we observed the formation of sarcomas after co-injections of tumor-derived mesenchymal stem cells or mouse embryonic fibroblasts with TICs; sarcomas are not observed in spontaneous MMTV-PyMT tumors and rarely observed in injections of TICs alone. Tumor initiation was also significantly increased in the orthotopic injection site compared to heterotopic injections. We conclude that tumor stroma and orthotopic sites both enhance tumor initiation by mammary cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BM:

Bone marrow

CFP:

Cleared mammary fat pad

CSC:

Cancer stem cell

FMMC:

Female mouse mammary cancer cell line

FVB/N:

Friend Virus B NIH mouse strain

MCF7:

Michigan Cancer Foundation cell line 7

MEFs:

Mouse embryonic fibroblasts

MMMC:

Male mouse mammary cancer cell line

MMTV-PyMT:

Mouse mammary tumor virus promoter–Polyoma middle T-antigen

MSCs:

Mesenchymal stem cells

SC:

Subcutaneous

SDF-1:

Stromal derived factor 1

TDMSCs:

Tumor-derived mesenchymal stem cells

TGF-β:

Tumor growth factor beta

TI:

Tumor initiation

TICs:

Tumor-initiating cells

References

  1. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1:46–54.

    Article  PubMed  CAS  Google Scholar 

  2. Strand DW, Hayward SW. Modeling stromal–epithelial interactions in disease progression. Discov Med. 2010;9:504–11.

    PubMed  Google Scholar 

  3. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  PubMed  CAS  Google Scholar 

  4. Pierce GB. Cancer: a problem of developmental biology. Englewood Cliffs: Prentice Hall; 1978.

    Google Scholar 

  5. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  PubMed  CAS  Google Scholar 

  6. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, Orimo A. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107:20009–14.

    Article  PubMed  CAS  Google Scholar 

  7. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–11.

    PubMed  CAS  Google Scholar 

  8. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.

    Article  PubMed  CAS  Google Scholar 

  9. Ma J, Lanza DG, Guest I, Uk-Lim C, Glinksii A, Glinsky G, Sell S. Characterization of mammary cancer stem cells in the MMTV-PyMT mouse model. Tumor Biol. 2012. doi:10.1007/s13277-012-0458-4.

  10. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.

    Article  PubMed  CAS  Google Scholar 

  11. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439:993–7.

    PubMed  CAS  Google Scholar 

  12. Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells. 2007;25:750–60.

    Article  PubMed  Google Scholar 

  13. Kasturi R, Joshi VC. Hormonal regulation of stearoyl coenzyme A desaturase activity and lipogenesis during adipose conversion of 3T3-L1 cells. J Biol Chem. 1982;257:12224–30.

    PubMed  CAS  Google Scholar 

  14. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    Article  PubMed  CAS  Google Scholar 

  15. Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini 3rd F. Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29:11–9.

    Article  PubMed  CAS  Google Scholar 

  16. Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, Spaeth E, Xu W, Zhang X, Lewis MT, Reuben JM, Krishnamurthy S, Ferrari M, Gaspar R, Buchholz TA, Cristofanilli M, Marini F, Andreeff M, Woodward WA. Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One. 2010;5:e12180.

    Article  PubMed  Google Scholar 

  17. Johann PD, Vaegler M, Gieseke F, Mang P, Armeanu-Ebinger S, Kluba T, Handgretinger R, Muller I. Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer. 2010;10:501.

    Article  PubMed  Google Scholar 

  18. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.

    Article  PubMed  CAS  Google Scholar 

  19. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R, Wicha MS. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71:614–24.

    Article  PubMed  CAS  Google Scholar 

  20. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11:377–91.

    Article  PubMed  CAS  Google Scholar 

  21. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 2003;5:485–9.

    Article  PubMed  Google Scholar 

  22. Nasef A, Fouillard L, El-Taguri A, Lopez M. Human bone marrow-derived mesenchymal stem cells. Libyan J Med. 2007;2:190–201.

    Article  PubMed  CAS  Google Scholar 

  23. Yan XL, Fu CJ, Chen L, Qin JH, Zeng Q, Yuan HF, Nan X, Chen HX, Zhou JN, Lin YL, Zhang XM, Yu CZ, Yue W, Pei XT. Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway. Breast Cancer Res Treat. 2011;132:153–64.

    Article  PubMed  Google Scholar 

  24. DeOme KB, Faulkin Jr LJ, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19:515–20.

    PubMed  CAS  Google Scholar 

  25. Illa-Bochaca I, Fernandez-Gonzalez R, Shelton DN, Welm BE, Ortiz-de-Solorzano C, Barcellos-Hoff MH. Limiting-dilution transplantation assays in mammary stem cell studies. Methods Mol Biol. 2010;621:29–47.

    Article  PubMed  CAS  Google Scholar 

  26. Martins FC, Botelho MF, Cabrita AM, de Oliveira CF. Influence of normal mammary epithelium on breast cancer progression: the protective role of early pregnancy. Tumori. 2010;96:999–1003.

    PubMed  Google Scholar 

  27. Medina D. The mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia. 1996;1:5–19.

    Article  PubMed  CAS  Google Scholar 

  28. Young LJ. The cleared mammary fat pad and the transplantation of mammary gland morphological structures and cells. In: Ip MM, Asch BB, editors. Methods in mammary gland biology and breast cancer research. New York: Kluwer/Plenum; 2000. p. 67–74.

    Chapter  Google Scholar 

  29. Welsch CW, O’Connor DH, Aylsworth CF, Sheffield LG. Normal but not carcinomatous primary rat mammary epithelium: readily transplanted to and maintained in the athymic nude mouse. J Natl Cancer Inst. 1987;78:557–65.

    PubMed  CAS  Google Scholar 

  30. Hoshino K. Morphogenesis and growth potentiality of mammary glands in mice. I. Transplantability and growth potentiality of mammary tissue of virgin mice. J Natl Cancer Inst. 1962;29:835–51.

    PubMed  CAS  Google Scholar 

  31. Bibby MC. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer. 2004;40:852–7.

    Article  PubMed  CAS  Google Scholar 

  32. Guest I, Ilic Z, Ma J, Grant D, Glinsky G, Sell S. Direct and indirect contribution of bone marrow-derived cells to cancer. Int J Cancer. 2010;126:2308–18.

    PubMed  CAS  Google Scholar 

  33. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O’Brien T, Kerin MJ. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010;124:317–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 CA 112481 (Dr. Sell) and the Ordway Research Institute (Dr. Glinsky).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart Sell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 740 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanza, D.G., Ma, J., Guest, I. et al. Tumor-derived mesenchymal stem cells and orthotopic site increase the tumor initiation potential of putative mouse mammary cancer stem cells derived from MMTV-PyMT mice. Tumor Biol. 33, 1997–2005 (2012). https://doi.org/10.1007/s13277-012-0459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0459-3

Keywords:

Navigation