Skip to main content

Advertisement

Log in

Differences in autophagy-related activity by molecular subtype in triple-negative breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of this study was to assess the expression of significant components of autophagy including beclin-1, light chain (LC) 3A, LC3B, and p62 in the molecular subtypes of triple-negative breast cancer (TNBC) and to evaluate the implications of the results. Tissues from 119 cases of TNBC were used for a tissue microarray. Expression of cytokeratin (CK) 5/6, epidermal growth factor receptor (EGFR), claudin 3, claudin 4, claudin7, E-cadherin, androgen receptor (AR), and gamma-glutamyltransferase 1 (GGT-1) was detected by immunohistochemical staining of the tissue microarrays. According to the results, the 119 cases of TNBC were subclassified into basal-like type (CK5/6-positive and/or EGFR-positive group), molecular apocrine type (AR-positive and/or GGT-1-positive group), claudin low type (claudin 3-, claudin 4-, or claudin 7-negative and/or E-cadherin-negative group), mixed type (having the features of more than two types), or null type (none of the above). Immunohistochemical staining for autophagy-related markers including beclin-1, LC3A, LC3B, and p62 was performed to evaluate the difference between clinicopathological parameters. TNBCs were categorized as basal-like type (36 patients, 30.3 %), molecular apocrine type (8 patients, 6.7 %), claudin low type (16 patients, 13.4 %), mixed type (37 patients, 31.1 %), and null type (22 patients, 18.5 %). Expression of nuclear p62 was higher in the molecular apocrine type and claudin low type than in other types of TNBC (p = 0.008). Expression of beclin-1 was higher in molecular apocrine type than in other TNBC types (p = 0.039). Expression of LC3A and LC3B showed no difference between the molecular subtypes. Multivariate Cox analysis revealed that the negative expression of p62 was associated with shorter disease-free survival [p = 0.012; odds ratio, 3.192; 95 % confidence interval (CI), 1.293–7.882] and shorter overall survival (p = 0.009; odds ratio, 3.895; 95 % CI, 1.409–10.771). Among the subtypes of TNBC, molecular apocrine breast cancer showed a higher expression of nuclear p62 and beclin-1 than others, which reflected higher autophagy activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12:814–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–73.

    Article  CAS  PubMed  Google Scholar 

  4. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.

    Article  CAS  PubMed  Google Scholar 

  5. Wan XB, Fan XJ, Chen MY, Xiang J, Huang PY, Guo L, et al. Elevated Beclin 1 expression is correlated with HIF-1alpha in predicting poor prognosis of nasopharyngeal carcinoma. Autophagy. 2010;6:395–404.

    Article  CAS  PubMed  Google Scholar 

  6. Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S, et al. The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy. 2009;5:930–6.

    Article  PubMed  Google Scholar 

  7. Li BX, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, et al. The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy. 2009;5:303–6.

    Article  PubMed  Google Scholar 

  8. Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1alpha expression. Pathol Oncol Res. 2009;15:487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshioka A, Miyata H, Doki Y, Yamasaki M, Sohma I, Gotoh K, et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol. 2008;33:461–8.

    CAS  PubMed  Google Scholar 

  10. Sivridis E, Koukourakis MI, Zois CE, Ledaki I, Ferguson DJ, Harris AL, et al. LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Am J Pathol. 2010;176:2477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–63.

    Article  CAS  PubMed  Google Scholar 

  14. Roy S, Debnath J. Autophagy and tumorigenesis. Semin Immunopathol. 2010;32:383–96.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy. 2005;1:66–74.

    Article  CAS  PubMed  Google Scholar 

  17. Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol. 2005;6:505–10.

    Article  CAS  PubMed  Google Scholar 

  18. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  19. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  21. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16 Suppl 1:61–70.

    Article  PubMed  Google Scholar 

  22. Venkitaraman R. Triple-negative/basal-like breast cancer: clinical, pathologic and molecular features. Expert Rev Anticancer Ther. 2010;10:199–207.

    Article  CAS  PubMed  Google Scholar 

  23. Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008;52:108–18.

    Article  CAS  PubMed  Google Scholar 

  24. Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, et al. Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res. 2009;15:2302–10.

    Article  CAS  PubMed  Google Scholar 

  25. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  26. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33:683–91.

    Article  CAS  PubMed  Google Scholar 

  27. Shaw RJ. Glucose metabolism and cancer. Curr Opin Cell Biol. 2006;18:598–608.

    Article  CAS  PubMed  Google Scholar 

  28. Mineta H, Miura K, Takebayashi S, Misawa K, Araki K, Misawa Y, et al. Prognostic value of glucose transporter 1 expression in patients with hypopharyngeal carcinoma. Anticancer Res. 2002;22:3489–94.

    PubMed  Google Scholar 

  29. Kato H, Takita J, Miyazaki T, Nakajima M, Fukai Y, Masuda N, et al. Glut-1 glucose transporter expression in esophageal squamous cell carcinoma is associated with tumor aggressiveness. Anticancer Res. 2002;22:2635–9.

    CAS  PubMed  Google Scholar 

  30. Koo JS, Park S, Kim SI, Lee S, Park BW. The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer. Tumour Biol. 2011;32:787–99.

    Article  CAS  PubMed  Google Scholar 

  31. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.

    Article  CAS  PubMed  Google Scholar 

  33. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.

    Article  CAS  PubMed  Google Scholar 

  34. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24:4660–71.

    Article  CAS  PubMed  Google Scholar 

  35. Chia KM, Liu J, Francis GD, Naderi A. A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia. 2011;13:154–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banneau G, Guedj M, MacGrogan G, de Mascarel I, Velasco V, Schiappa R, et al. Molecular apocrine differentiation is a common feature of breast cancer in patients with germline PTEN mutations. Breast Cancer Res. 2010;12:R63.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rolland P, Madjd Z, Durrant L, Ellis IO, Layfield R, Spendlove I. The ubiquitin-binding protein p62 is expressed in breast cancers showing features of aggressive disease. Endocr Relat Cancer. 2007;14:73–80.

    Article  PubMed  Google Scholar 

  38. Williams AR, Piris J, Wyllie AH. Immunohistochemical demonstration of altered intracellular localization of the C-Myc oncogene product in human colorectal neoplasms. J Pathol. 1990;160:287–93.

    Article  CAS  PubMed  Google Scholar 

  39. Kuusisto E, Kauppinen T, Alafuzoff I. Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathol Appl Neurobiol. 2008;34:169–80.

    Article  CAS  PubMed  Google Scholar 

  40. Fukuhara T, Sakaguchi N, Katahira J, Yoneda Y, Ogino K, Tachibana T. Functional analysis of nuclear pore complex protein Nup62/p62 using monoclonal antibodies. Hybridoma (Larchmt). 2006;25:51–9.

    Article  CAS  Google Scholar 

  41. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1002886).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ja Seung Koo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Jung, W.H. & Koo, J.S. Differences in autophagy-related activity by molecular subtype in triple-negative breast cancer. Tumor Biol. 33, 1681–1694 (2012). https://doi.org/10.1007/s13277-012-0424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0424-1

Keywords

Navigation