Tumor Biology

, Volume 33, Issue 5, pp 1477–1484 | Cite as

Expression of transforming growth factor-β1 (TGF-β1) and E-cadherin in glioma

  • Liu Yang
  • Mei Liu
  • Chuanzong Deng
  • Zhikai Gu
  • Yilu Gao
Research Article


Gliomas are the most common tumors in the central nervous system. This study aims to investigate the expressions of transforming growth factor-β1 (TGF-β1) and epithelial cadherin (E-cadherin) in human brain glioma tissues and the correlation between their expressions with clinical pathological features and clinical significance. The expressions of mRNA or protein of TGF-β1 and E-cadherin were detected by using reverse transcription polymerase chain reaction (RT-PCR) and Western blot in these tissues. Positive rates of the expression of TGF-β1 and E-cadherin were 62.9 % and 38.6 % in brain tissues of glioma patients. The expressions of mRNA or protein for TGF-β1 in brain glioma tissues were significantly higher than that in normal brain tissues (p < 0.01). Their expressions in well-differentiated glioma brain tissues were lower than those in poorly differentiated glioma brain tissues (p < 0.01). A negative correlation was found between TGF-β1 and E-cadherin in brain glioma tissues (r = −0.302, p < 0.011). The cell numbers of C6 glioma through Transwell chambers were decreased significantly (p < 0.01), and the expression of TGF-β1 was downregulated significantly (p < 0.01). However, the expression of E-cadherin was upregulated significantly (p < 0.01) after transfecting TGF-β1 siRNA. The expression changes of TGF-β1 and E-cadherin may be related to the emergence and the development of glioma. Downregulation of TGF-β1 expression using siRNA can decrease the invasive capability of C6 glioma cells.


TGF-β1 E-cadherin Glioma Differentiation Metastasis siRNA 


Conflicts of interest



  1. 1.
    Iwami K, Natsume A, Wakabayashi T. Cytokine networks in glioma. Neurosurg Rev. 2011;34(3):253–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Rainov NG, Heidecke V. Clinical development of experimental therapies for malignant glioma. Sultan Qaboos Univ Med J. 2011;11(1):5–28.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kros JM. Grading of gliomas: the road from eminence to evidence. J Neuropathol Exp Neurol. 2011;70(2):101–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Sasine JP, Savaraj N, Feun LG. Topoisomerase I inhibitors in the treatment of primary CNS malignancies: an update on recent trends. Anticancer Agents Med Chem. 2010;10(9):683–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Strik HM, Kolodziej M, Oertel W, Basecke J. Glycobiology in malignant gliomas: expression and functions of galectins and possible therapeutic options. Curr Pharm Biotechnol 2011.Google Scholar
  6. 6.
    Hdeib A, Sloan AE. Convection-enhanced delivery of (131)I-chTNT-1/B mAB for treatment of high-grade adult gliomas. Expert Opin Biol Ther. 2011;11(6):799–806.CrossRefPubMedGoogle Scholar
  7. 7.
    Patnaik S, Mallick R, Yendamuri S. MicroRNAs and esophageal cancer. J Gastrointest Oncol. 2010;1(1):55–63.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Plaas A, Velasco J, Gorski DJ, Li J, Cole A, Christopherson K, Sandy JD. The relationship between fibrogenic TGFbeta1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 2011.Google Scholar
  9. 9.
    Yang SY, Miah A, Pabari A, Winslet M. Growth factors and their receptors in cancer metastases. Front Biosci. 2011;16:531–8.CrossRefGoogle Scholar
  10. 10.
    Pardali E, ten Dijke P. Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci. 2009;14:4848–61.CrossRefGoogle Scholar
  11. 11.
    Hinck AP, O'Connor-McCourt MD. Structures of TGF-beta receptor complexes: implications for function and therapeutic intervention using ligand traps. Curr Pharm Biotechnol 2011.Google Scholar
  12. 12.
    Hau P, Jachimczak P, Schlaier J, Bogdahn U. TGF-beta2 signaling in high-grade gliomas. Curr Pharm Biotechnol 2011.Google Scholar
  13. 13.
    Di C, Mattox AK, Harward S, Adamson C. Emerging therapeutic targets and agents for glioblastoma migrating cells. Anticancer Agents Med Chem. 2011;10(7):543–55.CrossRefGoogle Scholar
  14. 14.
    You S, Alyanakian MA, Segovia B, Damotte D, Bluestone J, Bach JF, Chatenoud L. Immunoregulatory pathways controlling progression of autoimmunity in NOD mice. Ann N Y Acad Sci. 2008;1150:300–10.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cavallaro U, Dejana E. Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol. 2011;12(3):189–97.CrossRefPubMedGoogle Scholar
  16. 16.
    Xiao D, He J. Epithelial mesenchymal transition and lung cancer. J Thorac Dis. 2010;2(3):154–9.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Pan J, Yang M. The role of epithelial–mesenchymal transition in pancreatic cancer. J Gastrointest Oncol. 2011;2(3):151–6.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang J, Li LC. Small RNA and its application in andrology and urology. Transl Androl Urol. 2012;1(1):33–43.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Herfs M, Hubert P, Kholod N, Caberg JH, Gilles C, Berx G, Savagner P, Boniver J, Delvenne P. Transforming growth factor-beta1-mediated Slug and Snail transcription factor up-regulation reduces the density of Langerhans cells in epithelial metaplasia by affecting E-cadherin expression. Am J Pathol. 2008;172(5):1391–402.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chamberlain MC. Temozolomide: therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev Neurother. 2010;10(10):1537–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Schiffer D, Annovazzi L, Caldera V, Mellai M. On the origin and growth of gliomas. Anticancer Res. 2010;30(6):1977–98.PubMedGoogle Scholar
  22. 22.
    Sciume G, Santoni A, Bernardini G. Chemokines and glioma: invasion and more. J Neuroimmunol. 2010;224(1–2):8–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Sherman JH, Hoes K, Marcus J, Komotar RJ, Brennan CW, Gutin PH. Neurosurgery for brain tumors: update on recent technical advances. Curr Neurol Neurosci Rep. 2011;11(3):313–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Prager GW, Poettler M, Unseld M, Zielinski CC. Angiogenesis in cancer: anti-VEGF escape mechanisms. Transl Lung Cancer Res. 2012;1(1):14–25.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Candolfi M, Kroeger KM, Muhammad AK, Yagiz K, Farrokhi C, Pechnick RN, Lowenstein PR, Castro MG. Gene therapy for brain cancer: combination therapies provide enhanced efficacy and safety. Curr Gene Ther. 2009;9(5):409–21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schor AM, Schor SL. Angiogenesis and tumour progression: migration-stimulating factor as a novel target for clinical intervention. Eye (Lond). 2010;24(3):450–8.CrossRefGoogle Scholar
  27. 27.
    Glick AB, Perez-Lorenzo R, Mohammed J. Context-dependent regulation of cutaneous immunological responses by TGFbeta1 and its role in skin carcinogenesis. Carcinogenesis. 2008;29(1):9–14.CrossRefPubMedGoogle Scholar
  28. 28.
    Li AG, Lu SL, Han G, Kulesz-Martin M, Wang XJ. Current view of the role of transforming growth factor beta 1 in skin carcinogenesis. J Investig Dermatol Symp Proc. 2005;10(2):110–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Soufla G, Sifakis S, Baritaki S, Zafiropoulos A, Koumantakis E, Spandidos DA. VEGF, FGF2, TGFB1 and TGFBR1 mRNA expression levels correlate with the malignant transformation of the uterine cervix. Cancer Lett. 2005;221(1):105–18.CrossRefPubMedGoogle Scholar
  30. 30.
    Johnson C, Han YY, Nathan H, McCarra J, Alpini G, Meng F. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Transl Gastrointest Cancer. 2012;1(1):58–70.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Bellone G, Carbone A, Tibaudi D, Mauri F, Ferrero I, Smirne C, Suman F, Rivetti C, Migliaretti G, Camandona M, et al. Differential expression of transforming growth factors-beta1, -beta2 and -beta3 in human colon carcinoma. Eur J Cancer. 2001;37(2):224–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Djaborkhel R, Tvrdik D, Eckschlager T, Raska I, Muller J. Cyclin A down-regulation in TGFbeta1-arrested follicular lymphoma cells. Exp Cell Res. 2000;261(1):250–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Shariat SF, Kim JH, Andrews B, Kattan MW, Wheeler TM, Kim IY, Lerner SP, Slawin KM. Preoperative plasma levels of transforming growth factor beta(1) strongly predict clinical outcome in patients with bladder carcinoma. Cancer. 2001;92(12):2985–92.CrossRefPubMedGoogle Scholar
  34. 34.
    Sulzer MA, Leers MP, van Noord JA, Bollen EC, Theunissen PH. Reduced E-cadherin expression is associated with increased lymph node metastasis and unfavorable prognosis in non-small cell lung cancer. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1319–23.CrossRefPubMedGoogle Scholar
  35. 35.
    Zigler M, Dobroff AS, Bar-Eli M. Cell adhesion: implication in tumor progression. Minerva Med. 2010;101(3):149–62.PubMedGoogle Scholar
  36. 36.
    Mikheeva SA, Mikheev AM, Petit A, Beyer R, Oxford RG, Khorasani L, Maxwell JP, Glackin CA, Wakimoto H, Gonzalez-Herrero I, et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol Cancer. 2010;9:194.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hills CE, Squires PE. TGF-beta1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol. 2010;31(1):68–74.CrossRefPubMedGoogle Scholar
  38. 38.
    Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, Tulachan SS, Ito D, Kami K, Mori T, et al. N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clin Cancer Res. 2004;10(12 Pt 1):4125–33.CrossRefPubMedGoogle Scholar
  39. 39.
    Takano S, Kanai F, Jazag A, Ijichi H, Yao J, Ogawa H, Enomoto N, Omata M, Nakao A. Smad4 is essential for down-regulation of E-cadherin induced by TGF-beta in pancreatic cancer cell line PANC-1. J Biochem. 2007;141(3):345–51.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  1. 1.Department of NeurosurgeryThe Affiliated Hospital of Nantong UniversityNantongChina
  2. 2.Jiangsu Key Laboratory of NeuroregenerationNantong UniversityNantongChina

Personalised recommendations